Ускорители заряженных частиц принцип действия. Ускорители заряженных частиц. Циклотрон. Ускорители заряженных частиц accelerators

Вязание 02.05.2024
Вязание

По дисциплине

«Концепции современного естествознания»

на тему «Ускорители элементарных частиц»


1. Введение………………………………………………………………………….3

2. Современные ускорители заряженных частиц………………………………...4

3. Научные центры по исследованию элементарных частиц……………………7

4. Циклический ускоритель………………………………………………………15

5. Лазерный ускоритель на биениях……………………………………………..16

6. Заключение……………………………………………………………………..20

7. Список используемой литературы……………………………………………21


Введение

В настоящее время широкое применение в науке и технике нашли ускорители заряженных частиц – установки для получения пучков заряженных частиц (протонов, электронов, античастиц, ядер других атомов) высоких энергий – от десятков кэВ (10 3 эВ) до нескольких ТэВ (10 12 эВ). В технике такие ускорители используются для получения изотопов, упрочнения поверхностей материалов и производства новых материалов, для создания источников электромагнитного излучения (от микроволнового до рентгеновского излучения), широко применяются в медицине и т.д. Однако, по-прежнему, к числу основных областей применения ускорителей относятся ядерная физика и физика высоких энергий. Современные ускорители заряженных частиц – главные источники информации для физиков, изучающих вещество, энергию, пространство и время. Подавляющее большинство элементарных частиц, известных сегодня, не встречаются в естественных условиях на Земле и получены на ускорителях. Именно потребности физики элементарных частиц являются главным стимулом для развития ускорительной техники, и в первую очередь для повышения энергии, до которой могут быть ускорены заряженные частицы.

Современные ускорители заряженных частиц.

В современной физике высоких энергий используются ускорительные установки двух типов. Традиционная схема эксперимента на укорителе такова: пучок заряженных частиц ускоряется до максимально возможной энергии и затем направляется на неподвижную мишень, при столкновении с частицами которой рождается множество элементарных частиц. Измерения параметров рождающихся частиц дают богатейшую экспериментальную информацию, необходимую для проверки (или создания) современной теории элементарных частиц. Эффективность реакции определяется энергией сталкивающейся с мишенью частицы в системе центра масс. Согласно теории относительности при неподвижной мишени и одинаковых массах покоя сталкивающихся частиц энергия реакций

Где E – энергия налетающей на мишень частицы, m 0 – ее масса, c – скорость света. Так, при соударении с неподвижной мишенью протона, ускоренного до энергии 1000 ГэВ, только энергия 42 ГэВ идет на рождение новых частиц, а большая часть энергии расходуется на кинетическую энергию частиц, родившихся в результате реакции.

Предложенные в конце 60-х годов XX века ускорители на встречных пучках (коллайдеры), в которых реакция осуществляется при столкновении встречных ускоренных пучков заряженных частиц (электронов и позитронов, протонов и антипротонов и др.) дают существенный выигрыш в энергии реакции. В коллайдерах энергия реакций равна сумме энергий сталкивающихся частиц

E 1 + E 2 , то есть при равных энергиях частиц выигрыш составляет 2E/m 0 c 2 . Разумеется, эффективность коллайдера оказывается более низкой, чем ускорителя с неподвижной мишенью, так как частицы двух разреженных пучков сталкиваются между собой гораздо реже, чем частицы пучка и плотной мишени. Тем не менее, основная тенденция физики высоких энергий – это продвижение во все более высокие энергии, и большинство крупнейших ускорителей сегодня – это коллайдеры, в которых ради достижения рекордных энергий жертвуют числом столкновений.

Современные ускорители заряженных частиц являются самыми крупными экспериментальными установками в мире, причем энергия частиц в ускорителе линейно связана с его размером. Так, линейный ускоритель электронов SLC на энергию 50 ГэВ в Стэнфордском университете (США) имеет длину 3 км, периметр протонного синхротрона Тэватрон на энергию 900 ГэВ в лаборатории им. Э.Ферми (Батавия, США) составляет 6,3 км, а длина сооружаемого в Серпухове кольца, ускорительно-накопительного комплекса УНК, рассчитанного на энергию3 ТэВ, сооружаемый в 27-километровомускорительном тоннеле европейской организации ядерных исследований (ЦЕРН) в Женеве.

Постоянно возрастающие размеры ускорителей уже достигли границы разумного соотношения физических характеристик и финансовых затрат, превращая строительство ускорителей в проблему национального масштаба. Можно говорить, что чисто инженерные решения тоже близки к своему пределу. Очевидно, что дальнейший прогресс в ускорительной технике должен быть связан с поисками новых подходов и физических решений, делающих ускорители компактнее и дешевле в сооружении и эксплуатации. Последнее также немаловажно, так как энергопотребление современных ускорителей близко к энергопотреблению небольшого города. Прикладная ускорительная наука формулирует перед современной физикой интересную и чрезвычайно важную проблему. Нужно обратиться к новым достижениям в радиофизике, физики плазмы, квантовой электронике и физике твердого тела, чтобы найти достойные решения.

Наиболее многообещающими является поиск способов увеличения темпа ускорения частиц. В современных ускорителях темп ускорения частиц ограничен максимальной напряженностью ускоряющего электрического поля, которое можно создать в вакуумных системах. Эта величина не превышает сегодня 50МВ/м. В более сильных полях возникают явления электрического пробоя на стенках резонатора и образование плазмы, поглощающей энергию поля и препятствующей ускорению частиц. В действительности величина максимально допустимого высокочастотного поля зависит от его длины волны. Современные ускорители используют электрические поля с длиной волны больше 10 см. Например, переход к длине волны 1 см позволит увеличить максимально допустимые электрические поля в несколько раз и тем самым уменьшить размеры ускорителя. Разумеется, для реализации этого преимущества необходима разработка в этом диапазоне сверхмощных источников излучения, способных генерировать импульсы электромагнитных волн с мощностью в сотни МВт и длительностью импульса короче 100 нс. Это представляет собой крупную научно-техническую проблему, решением который заняты многие исследовательские центры мира.

Другой возможный путь – это отказ от традиционных вакуумных микроволновых резонансных систем и использование лазерного излучения для ускорения заряженных частиц. С помощью современных лазеров возможно создание электрических полей с напряженностью, намного превышающей предельные поля в микроволновом диапазоне. Однако непосредственное использование лазерного излучения в вакууме не позволяет достичь эффекта заметного ускорения заряженных частиц из-за невозможности резонансного черенковского взаимодействия волны с частицей, так как скорость света в вакууме всегда больше скорости частицы. В последние годы активно изучаются методы ускорения заряженных частиц лазерным излучением в газах и плазме, причем, поскольку в сильных электрических полях происходит ионизация вещества и образование плазмы, в конечном счете, речь идет об ускорении заряженных частиц интенсивным лазерным излучением в плазме.


Научные центры по исследованию элементарных частиц

Институт физики высоких энергий (ИФВЭ)

Основой для создания института явилось строительство в Протвино, расположенном вблизи подмосковного города Серпухова, самого крупного в мире (вплоть до 1972 г.) кольцевого протонного синхротрона. Собранная в этом научном центре уникальная экспериментальная техника дает возможность ученым проникнуть в глубины строения материи, понять и раскрыть неизвестные человеку законы бесконечно разнообразного и таинственного мира элементарных частиц.

Ускоритель пущен в октябре 1967 г. В этом ускорителе первоначально протоны образуются в результате газового разряда, затем ускоряются электрическим полем высоковольтного импульса трансформатора до энергии 760 КэВ и попадают в линейный ускоритель – инжектор, где предварительно ускоряются до энергии 100МэВ, и затем поступают в кольцо основного ускорителя. В нем уже протоны ускоряются до энергии 76 ГэВ. Число протонов в одном импульсе ускорителя – 3·10 12 . Повторение импульсов происходит через каждые 7 сек. Ускоритель имеет в диаметре 472 м. Вес электромагнитов 20 тыс. т.Потребляемая ускорителем мощность 100 МВт. Ежегодно для физических исследований ускоритель работает 3000 - 4000 час.

Научный центр имеет насыпь, под которой находится ускорительное кольцо, и экспериментальный зал. Эксперименты в ИФВЭ осуществляются как на внутренней мишени ускорителя, так и на выведенных пучках частиц.

УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ - установки, служащие для ускорения заряж. частиц до высоких энергий. При обычном словоупотреблении ускорителями (У.) наз. установки, рассчитанные на ускорение частиц до энергий более \ МэВ. На рекордном У. протонов - теватроне достигнута энергия 940 ГэВ (Лаборатория им. Ферми, США). Крупнейший ускоритель электронов LEP (ЦЕРН, Швейцария) ускоряет встречные пучки электронов и позитронов до энергии 45 ГэВ (после установки дополнит, ускоряющих устройств энергия может быть увеличена вдвое). У. широко применяются как в науке (генерация элементарных частиц, исследование их свойств и внутр. структуры, получение не встречающихся в природе нуклидов, изучение ядерных реакций, радиобиол., хим. исследования, работы в области физики твёрдого тела и т. д.), так и в прикладных целях (стерилизация медицинской аппаратуры, материалов и др., дефектоскопия, изготовление элементов микроэлектроники, произ-во радиофармакологич. препаратов для медицинской диагностики, лучевая терапия, радиац. технологии в технике - искусств, полимеризация лаков, модификация свойств материалов, напр, резины, изготовление термоусаживающихся труб и др.).

Во всех действующих У. увеличение энергии заряж. частиц происходит под действием внешних продольных (направленных вдоль скорости ускоряемых частиц) электрич. полей. Ведутся поиски способов ускорения с помощью полей, создаваемых другими движущимися частицами или эл--магн. волнами, к-рые возбуждаются или модифицируются самим пучком ускоряемых частиц или др. пучками (коллективные методы ускорения } .Коллективные методы теоретически позволяют резко увеличить темп ускорения (энергию, набираемую на \ м пути) и интенсивность пучков, но пока к серьёзным успехам не привели.

У. включают в себя следующие элементы: источник ускоряемых частиц (электронов, протонов, античастиц); генераторы электрич. или эл--магн. ускоряющих полей; вакуумную камеру, в к-рой движутся частицы в процессе ускорения (в плотной газовой среде ускорение заряж. частиц невозможно из-за их взаимодействия с молекулами газов, заполняющих камеру); устройства, служащие для впуска () и выпуска (эжекции) пучка из У.; фокусирующие устройства, обеспечивающие длит, движение частиц без ударов о стенки вакуумной камеры; магниты, искривляющие траектории ускоряемых частиц; устройства для исследования и коррекции положения и конфигурации ускоряемых пучков. В зависимости от особенностей У. один или несколько из перечисленных элементов в них могут отсутствовать.

В целях радиац. безопасности У. окружаются защитными стенами и перекрытиями (биол. защита). Толщина и выбор материала защиты зависят от энергии и интенсивности ускоренных пучков. Ускорители на энергии выше неск. ГэВ в целях безопасности обычно располагают под землёй.

По принципу устройства различают У. прямого действия, или высоковольтные ускорители (ускорение в пост, электрич. поле), индукционные ускорители (ускорение в вихревых электрич. полях, возникающих при изменении магн. индукции) и резонансные У., в к-рых при ускорении используются В Ч эл--магн. поля. Все действующие У. на предельно высокие энергии принадлежат к последнему типу.

Современные У. делятся на два больших класса: линейные ускорители и циклические ускорители . В линейных У. траектории ускоряемых частиц близки к прямым линиям. По всей длине таких У. располагаются ускоряющие станции. Наибольший из работающих линейных У. (электронный У. в Стэнфорде) имеет длину мили (3,05 км). Линейные У. позволяют получить мощные потоки частиц, но при больших энергиях оказываются слишком дорогими. В циклич. У. "ведущее" магн. поле изгибает траектории ускоряемых частиц, свёртывая их в окружности (кольцевые ускорители или синхротроны) или спирали (циклотроны, фазотроны, бетатроны и микротроны } .Такие У. содержат одно или несколько ускоряющих устройств, к к-рым частицы многократно возвращаются в течение ускорит, цикла.

Следует отметить различие между У. лёгких частиц (электронов и позитронов), к-рые обычно наз. электронными У., и У. тяжёлых частиц (протонов и ионов).

Электронные ускорители . Особенности электроняьгх у. связаны с двумя причинами. Скорость электронов и позитронов уже при небольших энергиях (неск. МэВ) мало отличается от скорости света и обычно может считаться постоянной, что существенно упрощает и удешевляет У. Но, с др. стороны, электроны и позитроны в магн. полях теряют много энергии на эл--магн. излучение (синхротрон-ное излучение} . В циклич. У. эти потери приводят либо к огромным размерам У. (при больших радиусах кривизны потери на синхротронное излучение уменьшаются), либо к необходимости иметь мощные ускоряющие станции, сильно удорожающие У. Синхротронное излучение играет и положит, роль: оно приводит к уменьшению размеров ускоряемого пучка, что облегчает создание накопителей , позволяющих проводить опыты на встречных пучках .

Кольцевые электронные У. используют в качестве источников синхротронного излучения в УФ- или рентг. диапазоне. Благодаря высокой плотности излучения и его острой направленности циклич. У. являются уникальными источниками эл--магн. волн указанных диапазонов. Большие потери электронов на излучение часто заставляют отдавать предпочтение линейным У.

Ускорители тяжёлых частиц (преим. протонов) сильно отличаются от электронных У. Потери энергии на синхротронное излучение в них при достигнутых в наст, время энергиях (~ \ ТэВ) практически отсутствуют, и поддерживать высокий темп ускорения обычно оказывается невыгодно (т. к. мощность, затрачиваемая на питание ускоряющих станций, пропорциональна квадрату напряжённости электрич. поля и быстро растёт с увеличением темпа ускорения). Отсутствие заметного синхротронного излучения приводит к тому, что амплитуда поперечных частиц в процессе ускорит, цикла затухает сравнительно медленно (как квадратный корень из импульса частиц), и устойчивость движения в отсутствие спец. мер нарушается под действием даже сравнительно слабых возмущений. Все У. тяжёлых частиц на высокие-энергии принадлежат к типу циклических. ^iV

В 90-х гг. всё большее значение приобретают накопительные и встречные кольца, в к-рых плотные пучки заряж. частиц циркулируют длит, время, не меняя своей энергии. Такие кольца используются для осуществления реакций между частицами, движущимися навстречу друг другу (встречные пучки), для накопления ионов и частиц, непосредственно в природе не встречающихся (позитронов и антипротонов), а также для генерации синхротронного излучения. При взаимодействии частиц, движущихся навстречу друг другу, может реализоваться вся приданная им при ускорении энергия, в то время как при взаимодействии ускоренных частиц с неподвижными большая часть энергии связана с движением центра масс частиц и в реакциях не участвует.

Историческая справка . Разработка У. началась в 1920-х гг. и имела целью расщепление атомных ядер. Раньше других были созданы электростатические генераторы [Р. Ван-де-Грааф (R. Van de Graaf)] и каскадные генераторы [Дж. Кокрофт (J. Cockroft) и Э. Уолтон (Е. Walton)], принадлежащие к классу У. прямого действия, а затем первый циклич. резонансный У.- [Э. Лоуренс (Е. Lawrence), 1921]. В 1940 Д. Керст (D. Kerst) построил первый У. индукц. типа - бетатрон.

В 40-х гг. появились теоретич. работы, в к-рых исследовалась устойчивость движения ускоряемых частиц. В первых работах этого цикла [В. И. Векслер и амер. физик Э. Макмиллан (Е. McMillan)] рассматривалась устойчивость продольного (ф а з о в о г о) движения, сформулирован принцип аетофазировки . Затем появились работы по созданию теории поперечного движения частиц-бета-тронных колебаний, приведшие к открытию сильной (знакопеременной) фокусировки [Н. Кристофилос (N. Christophilos), 1950; Э. Курант (Е. Curant), M. Ливинг-стон (M. Livingston), X. Снайдер (Н. Snyder), 1952], лежащей в основе всех совр. крупных У.

Быстрое развитие техники мощных В Ч радиотехн. устройств, произошедшее во время 2-й мировой войны 1939- 45, позволило приступить к созданию линейных У. на большие энергии. В электронных линейных У. используется электрич. поле бегущих волн дециметрового диапазона в диафрагмир. волноводах, в протонных - разработанные Л. Альверецом (L. Alvarez) метрового диапазона, нагруженные пролётными трубками. В нач. части таких У. всё чаще применяются У. с квадруполъной высокочастотной фокусировкой (англ. обозначение RFQ), в создании к-рых осн. роль сыграли В. В. Владимирский, И. М. Капчинский и В. А. Тепляков.

При сооружении циклич. У. находят всё большее применение сверхпроводящие магн. системы. Сверхпроводящие магниты используются в циклотронах для создания пост. магн. полей и в синхротронах протонных -для генерации медленно (в течение многих секунд) меняющихся магн. полей. Так работает самый большой из действующих протонных синхротронов-теватрон (США).

До 80-х гг. осн. открытия в физике элементарных частиц делались на протонных синхротронах. Сейчас многие интересные результаты получают на электрон-позитронных и протон-антипротонных кольцевых ускорителях со встречными пучками (к о л л а й д е р а х). Преимущества таких У. перед обычными: 1) существ. увеличение энергии взаимодействия (в системе центра масс); в ультрарелятивистском случае, к-рый всегда имеет место на встречных пучках, эта энергия возрастает от при соударении быстрых частиц с ядрами неподвижной мишени до на коллайдерах (т -масса соударяющихся атомов и атомов мишени, -полная энергия ускоренных частиц); 2) резкое уменьшение фона от посторонних реакций. Осн. недостаток коллайдеров - существенное (на неск. порядков) уменьшение числа взаимодействий (за то же время). Техника кольцевых У. со встречными электрон-позит-ронными пучками освоена в 1961 (ускоритель на энергию 2 х 250 МэВ во Фраскатти, Италия), а установки со встречными протонными и антипротонными пучками появились лишь после того, как были предложены методы э л е кт р о н н о г о (А. М. Будкер, 1967) и с т о х а с т и ч е с к о г о [С. Ван-дер-Меер (S. Van der Meer), 1972] о х л а ж д е н и я тяжёлых частиц (см. Охлаждение пучков з а р я ж е н н ы х ч а с т и ц). Всё большее внимание уделяется разработке нетрадиц. способов ускорения: коллективных методов, ускорения на биениях лазерных полей, ускорения в кильватерных полях и т. д. Начало этим работам положили В. И. Векслер, А. М. Будкер и Я. Б. Файнберг. Однако основанные на этих идеях У. пока не созданы.

Ускорители прямого действия . В таких У. заряж. частицы увеличивают энергию в постоянных или квазипостоянных (не меняющихся за время, в течение к-рого частицы набирают полную энергию) электрич. полях. Энергия, приобретаемая частицами, равна в этом случае их заряду, умноженному на пройденную разность потенциалов. Максимально достижимая энергия частиц в У. прямого действия определяется наибольшей разностью потенциалов (15-18 MB), к-рую можно создать без пробоя в физ. установках. Во всех практически используемых У. прямого действия последний электрод ускоряющей системы находится при потенциале земли, поскольку только в этом случае выведенные из У. частицы не теряют приобретённой энергии при дальнейшем движении.

К числу У. прямого действия относятся электростатич. генераторы, каскадные генераторы и перезарядные ускорители (или тандемные У.). Ускоряемые частицы в таких У. движутся внутри и вдоль трубы, изготовленной из изоляц. материала (обычно фарфора), внутри к-рой создаётся вакуум, необходимый для беспрепятственного движения ускоряемых частиц, а снаружи (под высоким давлением) нагнетается тщательно высушенная, освобождённая от кислорода газовая смесь (чаще всего азот с примесью шестифтористой серы), препятствующая развитию электрич. пробоев. Между электродами, расположенными у торцов трубки, создаётся ускоряющая разность потенциалов (рис. 1). Электрич. поле, направленное вдоль оси трубки, выравнивается металлич. разделит. кольцами, соединёнными с омич. делителем напряжения.

В э л е к т р о с т а т и ч е с к и х У. высокое напряжение создаётся с помощью быстро движущейся ленты, изготовленной из изолирующего материала, напр. резины. В низковольтной части установки на ленту наносится электрич. заряд. Этот заряд стекает на ленту с металлич. игл, заряжаемых от спец. генератора до неск. десятков кВ. Движущаяся лента переносит заряд в высоковольтную часть У., расположенную внутри полого металлич. колпака. Там заряд снимается с ленты с помощью таких же игл и перетекает с них к наружной поверхности колпака. Потенциал колпака (и всего оборудования, заключённого внутри него, в т. ч. ионного источника и высоковольтного электрода трубки) по мере поступления зарядов непрерывно увеличивается и ограничивается только пробоем.

Рис. 1. Схема устройства ускорительной трубки .

В к а с к а д н ы х г е н е р а т о р а х для создания больших разностей потенциалов используют схемы умножения напряжения.

В п е р е з а р я д н ы х У. сначала ускоряются отрицат. ионы (атомы, содержащие лишний электрон), а затем, после удаления двух (или нескольких) электронов,- образовавшиеся при обдирке положит. ионы. Как источник, так и выходные устройства таких У. находятся при потенциале земли, а высоковольтный, снабжённый обдирочным приспособлением электрод располагается в ср. части У. Перезарядные У. позволяют без пробоя получать удвоенные (а при более глубокой обдирке и более высокие) значения энергии.

Индукционные ускорители . К индукц. У. принадлежат бетатроны и линейные индукц. У.

Рис. 2. Схематический разрез бетатрона: 1 - полюсы магнита; 2 -сечение кольцевой вакуумной камеры; 3 -сердечник; 4 - обмотки электромагнита; 5 - ярмо магнита .

Схема устройства бетатрона приведена на рис. 2. Ускоряемые частицы (электроны) движутся в кольцевой вакуумной камере 2 , расположенной в зазоре электромагнита (1 - полюсы магнита). Их ускоряет вихревое электрич. поле, к-рое возбуждается при изменении магн. потока, пронизывающего орбиту ускоряемых частиц. Осн. часть этого потока проходит через сердечник 3 , расположенный в центр. части бетатрона. Обмотки 4 питаются перем. током. Конфигурация магн. поля в бетатроне должна подчиняться двум условиям: 1) магн. индукция на центр. орбите должна соответствовать изменяющейся энергии электронов; 2) конфигурация магн. поля в вакуумной камере должна обеспечивать устойчивость поперечного движения электронов или, как говорят, устойчивость их бетатрон-ных колебаний (см. ниже). Расположенные выше и ниже камеры кольцеобразные скошенные магн. полюсы создают необходимое для такой устойчивости поле, спадающее к периферии (рис. 8, б ).

Идея бетатронного метода ускорения высказана в 1922 Дж. Слепяном (J. Slepian), основы теории развиты в 1948 Р. Видероэ (R. Wideroe). Первый бетатрон построен в 1940. Простота и надёжность бетатронов обеспечили их широкое применение в технике и медицине (в области энергий 20-50 МэВ).

В линейных индукционных ускорителях силовые линии электрич. поля (с напряжённостью Е ) направлены вдоль оси ускорителя. Электрич. поле индуцируется изменяющимся во времени магн. потоком, проходящим через расположенные друг за другом кольцевые ферритовые индукторы 1 (рис. 3). Магн. поток возбуждается в них короткими (десятки или сотни нc) импульсами тока, пропускаемыми через одновитковые обмотки 2 , охватывающие индукторы. Фокусировка производится продольным магн. полем, к-рое создаётся катушками 3 , расположенными внутри индукторов. Линейные индукционные У. позволяют получать в импульсе рекордные (килоамперные) токи; наиб. мощный из работающих У.- АТА (США) - ускоряет электроны до энергии 43 МэВ при токе 10 кА. Длительность токовых импульсов 50 нc.


Рис. 3. Схема устройства линейного индукционного ускорителя: 1 -сердечник индуктора; 2 -возбуждающая обмотка; 3 -фокусирующая катушка .

Резонансные ускорители . В резонансных У. для увеличения энергии заряж. частиц используются ВЧ продольные электрич. поля. Ускорение в таких полях возможно при выполнении одного из двух условий: либо ускоряемые частицы должны двигаться вместе с эл--магн. волной, сохраняя своё положение относительно неё (у с к о р и т е л и с б е г у щ е й в о л н о й), либо они должны взаимодействовать с ней только в такие моменты времени, когда электрич. поле имеет нужное (ускоряющее) направление и нужную величину (собственно резонансные У.). Участки, на к-рых происходит взаимодействие частиц с ускоряющим полем, наз. у с к о р я ю щ и м и з а з о р а м и и л и у с к о р я ю щ и м и п р о м е ж у т к а м и. На остальной части пути частицы не испытывают действия ВЧ-поля либо потому, что его там просто нет, либо потому, что частицы защищены от него экранами.

У. с бегущей волной применяют в осн. для ускорения лёгких частиц (электронов и позитронов), скорость к-рых уже при небольших энергиях мало отличается от . Фазовая скорость эл--магн. волн в вакуумных волноводах всегда превышает скорость света; нагружая волноводы системой перфорир. диафрагм, можно замедлить скорость волны, но не очень сильно. Поэтому для ускорения медленных частиц У. с бегущей волной не применяют.

.

Рис. 4. Схема устройства ускорителя Видероэ: 1 - пролётные f трубки; 2-генератор ВЧ-колебаний; 3 -ускоряющие зазоры;

Линейные резонансные ускорители . Простейший резонансный У.- у с к о р и т е л ь В и д е р о э (рис. 4). Расставленные по ходу пучка металлич. пролётные трубки присоединяются (через одну) к полюсам ВЧ-генератора. В ускоряющих зазорах (промежутках между противоположно заряженными пролётными трубками) создаётся продольное электрич. ВЧ-поле с напряжением порядка сотен кВ. Частицы, подходящие к ускоряющему зазору в нужный момент времени, ускоряются электрич. полем, а затем "прячутся" в очередную пролётную трубку. Её длина и скорость частицы согласованы между собой так, что к очередному зазору частицы подходят в тот момент времени, когда электрич. поле имеет правильное направление и величину, т. е. ту же фазу, что и в предыдущем ускоряющем зазоре. Для этого необходимо, чтобы выполнялось условие


где /-длина трубки и ускоряющего промежутка; - скорость частицы, выраженная в долях скорости света с; -длина волны эл--магн. колебаний (в пустоте); п -любое целое число. Ускоренный пучок состоит, т. о., из цепочки сгустков частиц (банчей), прошедших через ускоряющие зазоры при надлежащей электрич. поля. При разработке структуры линейного У. важно правильно выбрать длины не только пролётных трубок, но и ускоряющих зазоров. Эти длины должны быть, с одной стороны, достаточно велики, чтобы выдерживать заметные напряжения (сотни кВ, а иногда и мегавольты), а с другой - достаточно малы, чтобы фаза ВЧ-колебаний за время прохождения частицы менялась не слишком сильно.

При увеличении скорости частиц ускорители Видероэ становятся неэффективными и уступают место ускорителям Альйареца. В них пролётные трубки не присоединяются к генератору, а располагаются друг за другом внутри длинного цилиндрич. резонатора, в к-ром возбуждаются эл--магн. колебания. ВЧ-поле, к-рое вдали от пролётных трубок распределено так же, как в обычном резонаторе, у его оси концентрируется-в ускоряющих зазорах. Схема расположения элементов "ускоряющий зазор - пролётная трубка-ускоряющий зазор" и т. д. остаётся той же, что и в ускорителях Видероэ, но условие (1) принимает вид

Линейные резонансные У. эффективно работают, если в них инжектируются достаточно быстрые частицы, предварительно ускоренные с помощью У. прямого действия или с помощью У. со знакопеременной высокочастотной фокусировкой. - v

Циклотроны -простейшие и исторически первые У. цик-лич. типа (рис. 5). В совр. понимании циклотронами называются резонансные циклич. У., работающие при не меняющемся во времени ведущем магн. поле и при пост, частоте ускоряющего ВЧ-поля. В обычных циклотронах магн. поле обладает азимутальной и почти не зависит от радиуса; траектории ускоряемых частиц имеют вид раскручивающихся спиралей. Обычные циклотроны применяют для ускорения тяжёлых нерелятивистских частиц-протонов и ионов. Вакуумная камера циклотронов ограничена внеш. стенкой цилиндрич. формы и двумя плоскими горизонтально расположенными крышками. Полюсы электромагнита обычных циклотронов создают в камере почти однородное (слегка спадающее к периферии) магн. поле. Ускоряющий зазор образуется срезами двух расположенных в камере и обращённых друг к другу электродов, имеющих форму полых полуцилиндров,- д у а н т о в. Дуанты присоединяются к полюсам высоковольтного генератора через четвертьволновые линии.

Рис. 5. Схема устройства циклотрона .

На частицу, движущуюся по окружности, действует центростремит. сила Лоренца равная центробежной силе где r - радиус кривизны траектории, -заряд частицы. Т. о., Переходя к более удобным единицам, получим

где рс -произведение импульса частицы р на скорость света с - выражается в МэВ, индукция магн. поля В измеряется в теслах, а r-в м.

Предельная энергия, достижимая в обычных циклотронах; составляет для протонов ок. 20 МэВ, а частота ускоряющего поля (при В = 2 Тл)- ок. 30 МГц. При больших энергиях ускоряемые частицы выходят из синхронизма с ускоряющим напряжением из-за необходимого для поперечной устойчивости уменьшения В от центра к периферии и вследствие релятивистских эффектов.

Обычные циклотроны широко применяются для получения изотопов и во всех др. случаях, когда нужны протоны (или ионы) с энергией до 20 МэВ (или ~20 МэВ/нуклон). Если же нужны протоны с более высокой энергией (до неск. сотен МэВ), то применяются циклотроны с азимутальной вариацией магн. поля. Устойчивость поперечного движения в таких циклотронах обеспечивается благодаря отказу от азимутальной симметрии магн. поля и выбору такой его конфигурации, к-рая позволяет сохранить устойчивость движения и при нарастающих (в среднем) к периферии значениях магн. индукции.

Процесс ускорения в циклотронах происходит непрерывно: в одно и то же время одни частицы только покидают ионный источник, другие находятся на середине пути, а третьи заканчивают процесс ускорения. Типичный ток внутр. пучка в циклотронах составляет ок. 1 мА, ток выведенного пучка зависит от эффективности эжекции и от тепловой устойчивости выводных фольг; обычно он составляет неск. десятков мкА.

Фазотроны . В фазотронах магн. поле постоянно во времени и сохраняется его цилиндрич. симметрия. Магн. поле уменьшается к периферии, частота обращения частиц с возрастанием их энергии уменьшается, и соответственно уменьшается частота ускоряющего поля. При этом отпадают ограничения на энергию ускоренных частиц, но резко (на неск. порядков) уменьшается интенсивность ускоренного пучка. Изменение частоты ускоряющего поля приводит к тому, что процесс ускорения разбивается на циклы: новая партия частиц может быть введена в фазотрон лишь после того, как ускорение предыдущей партии закончено и частота возвращена к исходному значению. Обычная рабочая область фазотронов от неск. сотен до тысячи МэВ. При дальнейшем увеличении энергии размеры магнитов становятся слишком большими, а их вес и стоимость чрезмерно возрастают. В последнее время (90-е гг.) новых фазотронов не строят. Для энергий до неск. сотен МэВ применяют циклотроны с азимутальной вариацией магн. поля, а для ускорения до больших энергий используют синхротроны.

Синхротроны применяют для ускорения частиц всех типов: собственно синхротроны-для электронов и синхротроны для протонов и др. ионов (старое назв.- синхрофазотроны, см. Синхротрон протонный) . Энергия, до к-рой ускоряются частицы в синхротронах, ограничена для электронов мощностью синхротронного излучения, а для протонов и ионов только размерами и стоимостью У.

В синхротронах постоянной в процессе ускорения остаётся орбита, по к-рой обращаются частицы. Ведущее магн. поле создаётся только вдоль узкой дорожки, охватывающей кольцевую вакуумную камеру, в к-рой движутся частицы. Как ясно из (3), при пост. радиусе магн. индукция должна возрастать пропорц. импульсу ускоряемых частиц. Частота обращения со (при пост. длине орбиты) связана с импульсом ф-лой

где -частота, с к-рой обращалась бы в синхротроне частица, движущаяся со скоростью света. Частота ускоряющего поля может совпадать с частотой обращения частиц или в целое число раз (оно наз. к р а т н о с т ь ю) превосходить её. Т. о., в электронных синхротронах (у к-рых всегда p>>mc ) частота ускоряющего поля постоянна, в то время как индукция магн. поля возрастает. В протонных синхротронах на протяжении ускоряющего цикла возрастает как индукция магн. поля, так и частота ускоряющего напряжения.

Микротроны -циклич. У. с пост. магн. полем и с приращением энергии на оборот, равным энергии покоя электрона (0,511 МэВ). Если всё приращение энергии происходит на одном коротком участке, то в пост. магн. поле частицы переходят с одной круговой орбиты на другую. Все эти орбиты касаются друг друга в точке расположения ускоряющего устройства. Энергия электронов в таких У. достигает неск. десятков МэВ.

Размеры ускорителей. Ускорительные комплексы . Длина линейного У. определяется энергией ускоряемых частиц и темпом ускорения, а радиус кривизны орбиты кольцевых ускорителей - энергией частиц и макс. индукцией ведущего магн. поля.

В совр. электронных линейных У. темп ускорения составляет 10-20 МэВ/м, в протонных - 2,5-5 МэВ/м. Увеличение темпа ускорения наталкивается на две осн. трудности: на увеличение резистивных потерь в стенках резонаторов и на опасность электрич. пробоев. Для снижения резистивных потерь можно использовать сверхпрово-дящие резонаторы (первые такие У. уже начали работать); для борьбы с пробоями тщательно выравнивают распределение электрич. поля в резонаторах, избегая местных неоднородностей. Возможно, темп ускорения в протонных линейных У. удастся увеличить со временем на порядок величины.

Размеры циклических У. связаны с индукцией ведущего магн. поля ф-лой (3). При ускорении однозарядных частиц и среднем по кольцу значении Тл (что соответствует эта ф-ла даёт (м). В соответствии с этим У. на 1 ТэВ должен иметь периметр ~ 20 км. Такие У. в целях защиты от излучений строят под землёй. Огромные размеры У. на большие энергии приводят к капитальным затратам, выражаемым миллиардами долларов.

Приведённые оценки справедливы для У., магн. блоки к-рых содержат железное ярмо. Увеличивать B макс выше 1,8 Тл оказывается невозможным из-за насыщения железа, однако это можно сделать, переходя к сверхпроводящим магн. системам. Первый такой У.- тэватрон - уже работает в Лаборатории им. Ферми в США. Магн. поле в блоках, намотанных кабелем с жилами из NbTi в медной матрице, при темп-ре 4 К может быть поднято до 5- 5,5 Тл, а при понижении темп-ры до 1,8 К или при переходе к NbSn-до 8-10 Тл. (Сплав NbSn при изготовлении ускорителей не применяют из-за его хрупкости.) Дальнейшее понижение темп-ры позволяет переходить к ещё большим магн. полям, но экономически невыгодно; размеры У. уменьшаются, но возрастает количество дорогого и энергоёмкого криогенного оборудования.

Менее жёстко определены минимально допустимые значения В . В У. с железным ярмом B мин не должно быть меньше (6-10) . 10~ 3 Тл, т. к. при меньших полях слишком большой вклад в полную величину магн. индукции начинают вносить остаточные магн. поля, пространственное распределение к-рых обычно бывает неблагоприятным. Отношение B макс /B мин, а следовательно, и отношение импульсов эжектируемых и инжектируемых частиц в У. с обычными магнитами не может поэтому превосходить 200-300. В сверхпроводящих магн. системах этот диапазон оказывается ещё меньше, т. к. при малых полях на пространств. распределении магн. индукции сильно сказываются вихревые токи в сверхпроводящих проводниках. Указанные ограничения - одна из причин, приводящих к тому, что все крупные ускорит. комплексы содержат неск. последовательно работающих У.: линейный У.- инжектор, один или неск. промежуточных У.- бустеров ,наконец, основной У., доводящий заряж. частицы до предельной энергии, и, возможно, накопительное кольцо. Схема ускорит. комплекса ЦЕРН приведена на рис. 6.

Сооружение и эксплуатация этого комплекса про-изводится и финансируется содружеством стран Европы. Наиб. У., входящий в состав комплекса,- это накопительно-столкновительное электрон-по-зитронное кольцо LEP , ускоряющее электронные и позитрон-ные пучки до энергии 45 ГэВ. У. расположен в глубоком подземном тоннеле и имеет периметр 27 км. В этом тоннеле в 90-х гг. предполагается соорудить большой сверхпроводящий адронный коллайдер LHC (Large Hadron Collider), рассчи-тайный на ускорение протонов и антипротонов до энергии 7 ТэВ, а в дальнейшем и на ускорение ионов.


Рис. 6. Схема ускорительного комплекса ЦЕРН (Швейцария) .

Для инжекции в LHC будет использоваться ускоритель SPS (Super Proton Synchrotron), на выходе к-рого протоны имеют энергию ~450 ГэВ. Периметр этого ускорителя 6,9 км, он расположен под землёй на глубине 40 м. SPS получает тяжёлые частицы от протонного синхротрона PS, в к-рый, в свою очередь, протоны и ионы попадают из бустера "Изольда", а электроны и позитроны-из бустера ЕРА.

В России наиб. протонный (и ионный) У. (70 ГэВ) работает в Протвино (ок. Серпухова, Моск. обл.). При нём начато сооружение ускорительно-накопительного центра (УНЦ) с периметром 21 км. Он рассчитан на ускорение протонов и антипротонов до энергии 3 ТэВ. В Международном объединённом ин-те ядерных исследований (ОИЯИ, г. Дубна, Моск. обл.) работает протонный синхротрон, ускоряющий протоны до 9 ГэВ, фазотрон и сверхпроводящий У. ионов - нуклотрон, ускоряющий ионы до энергии 6 ГэВ/нуклон.

В Ин-те теоретич. и эксперим. физики (ИТЭФ, Москва) протонный синхротрон ускоряет протоны до энергии 9 ГэВ.

Фазовые колебания . Как уже отмечалось, в резонансных У. пучок ускоряемых частиц самопроизвольно разделяется на сгустки. Центр. частицы сгустков очередной раз подходят к ускоряющему зазору (в циклич. У.) или к очередному ускоряющему зазору (в линейных У.) в те моменты времени, когда фаза ускоряющего ВЧ-напряжения имеет нужное значение. Такие частицы наз. р а в н о в е с н ы м и. Др. частицы сгустка в процессе ускорения колеблются около равновесной, то опережая её, то отставая от неё. Эти колебания наз. фазовыми. Они сопровождаются колебаниями энергии и импульса ускоряемых частиц относительно энергии и импульса равновесной частицы.

Рассмотрим фазовое движение в линейном У. Будем для простоты считать, что ускоряющие зазоры настолько коротки, что частицы проходят их практически мгновенно. Пусть нек-рая частица подошла к зазору позже, чем равновесная. Чтобы она начала её догонять, она должна получить больше энергии при прохождении зазора. Наоборот, частица, пришедшая к зазору раньше равновесной, должна получить меньше энергии.

На рис. 7 синусоидальная кривая изображает изменяющуюся во времени напряжённость Е ускоряющего ВЧ-поля. Штриховая линия отмечает напряжённость, к-рая должна существовать в момент прохождения равновесной частицы, чтобы она вовремя подошла к следующему зазору. На каждом периоде изменения Е есть две такие точки: С и D . Легко, однако, видеть, что движение устойчиво только в точке С. Лишь в этой точке в более поздние моменты времени напряжённость поля возрастает, а в более ранние моменты снижается.

Рис. 7. К обсуждению принципа автофазировки .

Детальный анализ продольного движения частиц показывает, что при достаточной амплитуде ВЧ-колебаний всегда существует область устойчивого фазового движения- в данном случае область, расположенная вокруг точки С. Это утверждение наз. принципом автофазировки .

В циклическом У. от энергии зависит не только скорость частиц, но и длина пути, проходимого ими oт предыдуще-го ускоряющего зазора до последующего (если их несколько), а также периметр траектории. Введём коэф. удлинения oрбит.


где L - периметр орбиты, р -импульс частицы. Изменение времени, затрачиваемого частицей на обращение в У., зависит от её импульса и описывается ф-лой


где g-лоренц-фактор частицы, В линейных У. a = 0, и устойчивой является точка С . В циклическом У. при устойчива точка С, а при точка D . Энергия, при к-рой эти точки меняются местами, соответствует соотношению

и наз. к р и т и ч е с к о й э н е р г и е й (в англ. литературе- transition energy). В этой точке фаза ускоряющего напряжения должна быть переброшена из одной "синхронной точки" в другую. При подходе к критич. энергии частоты фазовых колебаний (в циклических У. они часто наз. ради-ально-фазовыми) снижаются и фазовые размеры сгустков резко уменьшаются, а разброс частиц по импульсам (и по энергии) увеличивается. В момент перехода через критич. энергию усиливается влияние разл. вида неустойчивостей. В зависимости от особенностей конструкции У.- от величины a- критич. энергия может лежать внутри или вне рабочего диапазона энергий.

Проблема поперечной устойчивости. Бетатронные колебания . В крупных кольцевых У. за время ускорения частицы проделывают путь, измеряемый сотнями тысяч или даже миллионами км. В накопит. системах этот путь ещё на неск. порядков больше, а в небольших У.- на неск. порядков меньше, но он всегда очень велик по сравнению с диаметром вакуумной камеры, поперечные размеры к-рой обычно не превосходят двух десятков см. Столкновение частиц со стенками камеры приводит к их потере. Поэтому ускорение возможно лишь при наличии тщательно рассчитанной и исполненной системы фокусировки.

При любом значении энергии ускоряемой частицы (в области устойчивости фазовых колебаний) в кольцевых У. имеется замкнутая (устойчивая) орбита. Находясь в вакуумной камере У., частицы движутся вблизи этой орбиты, совершая около неё бетатронные колебания .Частоты этих колебаний существенно превосходят частоты фазовых колебаний, так что при исследовании бетатронных колебаний энергию ускоряемых частиц и положение замкнутой орбиты можно считать постоянными.

При теоретич. рассмотрении бетатронных колебаний обычно исследуют площади, к-рые занимают ускоряемые частицы в "фазовых плоскостях" (r, р r )и (z, p z), где r и z - горизонтальная и вертикальная координаты частицы (r = R - R 0 , где R -радиус частицы, R 0 - радиус равновесной траектории), a p r и p z - соответствующие составляющие её импульса. При невозмущённом движении эти площади имеют форму эллипса. Согласно Лиувилля теореме , величины площадей не меняются при движении. В процессе ускорения частицы пересекают многочисл. неоднородности магн. и электрич. полей. При этом занятая пучком в фазовом пространстве область может приобретать сложную форму, так что эфф. величина площади - площадь описанного эллипса - возрастает. В тщательно настроенном У. такого возрастания не происходит. При наличии связи между горизонтальным и вертикальным движениями сохраняется не каждая из указанных площадей, а объём, занимаемый пучком в четырёхмерном пространстве (r , z, р r , p z) .

Практич. интерес обычно представляет область, занимаемая пучком не в фазовых плоскостях, а в плоскостях (r , q r ), (z , q z ) где q r и q z -углы, составляемые скоростями частиц с касательной к равновесной орбите. Эти площади наз. г о р и з о н т а л ь н ы м (или р а д и а л ь н ы м) и в е р т ик а л ь н ы м (или а к с и а л ь н ы м) эмиттансами пучка e r и e z . Переход от импульсов к углам даётся ф-лами

где р -продольная составляющая импульса, к-рая практически совпадает с полным импульсом; р 0 = тс . Из теоремы Лиувилля следует, что интегралами движения являются величины p e r и p e z или, соответственно, bge r и bge z , к-рые наз. н о р м а л и з о в а н н ы м и э м и т т а н с а м и.

Из сказанного ясно, что при ускорении нормализованные эмиттансы остаются неизменными, а обычные эмит-тансы e r и e z уменьшаются как 1/bg. Соответственно уменьшаются поперечные размеры пучка.

Важнейшей характеристикой любого У. является его а к с е п т а н с - наиб. эмиттанс, к-рый У. пропускает без потерь. Высокая интенсивность ускоряемого пучка может быть достигнута только в У. с достаточно большим аксеп-тансом.

При заданных размерах вакуумной камеры аксептанс У. пропорционален макс. углу, к-рый могут составлять траектории частиц с равновесной орбитой, и, следовательно, обратно пропорционален длине волны бетатронных колебаний. Вертикальный и горизонтальный аксептансы У. пропорциональны, т. о., числам бетатронных колебаний на оборот Q r и Q z к-рые поэтому желательно увеличивать. Во всех существующих У. Q r и Q z близки друг к другу. Если оба они меньше 1, фокусировка наз. с л а б о й (м я гк о й), а если больше 1-с и л ь н о й (ж ё с т к о й).

Все целые и полуцелые значения Q r и Q z запрещены. При целых Q частицы возвращаются к магн. элементам в одной и той же фазе бетатронных колебаний, влияние погрешностей поля складывается и возникает резонансная раскачка колебаний (в н е ш н и й р е з о н а н с). Вокруг целых значений имеются запрещённые области частот, внутри к-рых возрастание колебаний, хотя и ограничено по величине, но оказывается недопустимо большим, напр. превосходит размеры вакуумной камеры.

Полуцелые значения Q r и Q z запрещены из-за возникновения п а р а м е т р и ч е с к о г о р е з о н а н с а - резонансной раскачки колебаний, возникающей благодаря нерегулярностям градиента магн. поля. В нек-рых У., в особенности в накопителях, сказываются и более высоких порядков.

В циклич. У. для фокусировки частиц используют поперечные магн. поля. В однородном ведущем поле имеется только горизонтальная фокусировка, а вертикальная фокусировка отсутствует (Q z =0)Этот результат легко понять, замечая, что при движении частиц в однородном (вертикальном) магн. поле (B r = 0, B z = const) силы Лоренца не имеют составляющей по z и частицы сохраняют нач. аксиальную скорость. Необходимые для осевой фокусировки силы возникают лишь при наличии радиальной составляющей магн. поля.

Конфигурация магн. поля зависит от формы полюсных наконечников. На рис. 8 (a ) и 8(б ) изображены полюсные наконечники, имеющие форму фигуры вращения (вокруг оси z ). На рис. 8 (а )изображены плоские полюсы, создающие однородное вертикальное поле, такие поля не создают осевой фокусировки. На рис. 8 (б )изображена картина поля, возникающая между полюсами, создающими зазор, расширяющийся к периферии. В этом случае сила Лоренца приобретает фокусирующую (возвращающую к центральной плоскости) осевую составляющую. Однако появление осевой фокусировки сопровождается ослаблением радиальной: частицы, отклонившиеся к периферии, медленнее возвращаются к равновесной траектории, т. к. попадают в более слабое поле.


Рис. 8. а -магнитные силы в однородном поле; б -магнитные силы в поле, уменьшающемся к периферии .

В линейных У. проблема фокусировки также является важной, хотя она и не так критична, как в кольцевых У.: длина пути частиц в линейных У. невелика и ускоряемые частицы не возвращаются к уже пройденным возмущениям поля.

В циклических У., магн. система к-рых обладает азимутальной симметрией, справедлива ф-ла

Одновременная устойчивость радиальных и аксиальных бетатронных колебаний в этом случае возможна только при т. е. при слабой фокусировке (см. Фокусировка частиц в ускорителе ).При сильной фокусировке участки, фокусирующие по z и дефокуси-рующие по r , сменяются участками, фокусирующими по горизонтальной и дефокусирующими по вертикальной координатам. При последоват. расположении таких участков и правильном выборе градиентов магн. поля и геометрии магнитов система в целом оказывается фокусирующей, причём оба результирующих значения бетатронных частот могут существенно превосходить единицу.

В У. с сильной фокусировкой применяются квадруполь-ные магн. или электрич. (при небольших энергиях ускоряемых частиц) поля. На рис. 9 (а )изображена квадруполь-ная магн. линза, создающая фокусирующее в вертикальном направлении (по оси z) и дефокусирующее по радиусу r магн. поле. Вакуумная камера располагается вдоль оси линзы между её полюсами (на рис. не изображена). Положительно заряженные частицы "летят" на читателя. Четыре такие частицы и действующие на них силы Лоренца изображены точками и стрелками. В фокусирующих по радиусу (и дефокусирующих по z ) линзах магн. полюса N и S меняются местами. В кольцевых У. магниты, создающие ведущее магн. поле, располагаются между линзами. Они создают направленное по оси z однородное магн. поле. В нек-рых У. применяют магниты с совмещёнными ф-циями. Их магн. поле содержит как дипольную (ведущее поле), так и квадрупольную составляющую (рис. 9, б) .


Ркс. 9. а -квадрупольная магнитная линза; б -магнитный блок с совмещёнными функциями .

Для поперечной фокусировки в линейных У. можно было бы попытаться использовать эл--магн. волну, к-рая ускоряет частицы. Однако в обычных волнах E -типа точки, соответствующие устойчивому фазовому движению, оказываются неустойчивыми для поперечных колебаний и наоборот. Чтобы обойти эту трудность, можно применять знакопеременную фазовую фокусировку (точки С и D на рис. 7 последовательно сменяют друг друга) или отказаться от азимутальной симметрии электрич. поля в резонаторе (квадрупольная ВЧ-фокусировка). Чаще всего, однако, для поперечной фокусировки применяют квадрупольные поля, создаваемые спец. магн. линзами. С 80-х гг. для изготовления таких линз начали использовать пост. магниты (сплав SmCo).

Эффекты, связанные с интенсивностью . Кроме резонан-сов, возникающих при взаимодействии пучка с внеш. полями, при больших интенсивностях пучков начинают играть роль разл. рода неустойчивости, связанные с взаимодействиями частиц пучка друг с другом, с элементами вакуумной камеры и ускоряющей системы, а в У. со встречными пучками-и с воздействием пучков друг на друга. Наиб. простым среди этих эффектов является кулоновский сдвиг частоты бетатронных колебаний. Электрич. поле пучка отталкивает к периферии наружные частицы и не действует на центральную частицу сгустка. В результате этого частоты бетатронных колебаний частиц в пучке начинают отличаться от частоты колебаний центра тяжести пучка. Если это различие превышает расстояние между ближайшими запрещёнными значениями Q , то при любой настройке У. часть пучка неизбежно теряется. Электроста-тич. отталкивание частиц сказывается и на фазовых колебаниях пучка (в частности, приводит к эффекту "отрицательной массы").

Пучок ускоренных частиц взаимодействует со своим электростатич. изображением в вакуумной камере и с расположенными в ней предметами (резонаторами ускоряющих станций, датчиками измеряющих устройств, деталями и вводами вакуумной системы и т. д.). При этом сила, действующая на каждую частицу, пропорц. сдвигу пучка в камере относительно равновесной траектории и его линейной плотности. В результате этого взаимодействия возникают эл--магн. поля, действующие на позже пролетающие частицы (эффект "г о л о ва - х в о c т") и на сами вызвавшие появление полей частицы при возвращении этих частиц к возбуждённому участку. Указанное взаимодействие вызывает ряд эффектов, приводящих к потере устойчивости пучка. Кроме уже упомянутого эффекта "голова- хвост", могут возникать р е з и с т и в н а я н е-, у с т о й ч и в о с т ь (взаимодействие с бегущим вдоль камеры электрич. изображением пучка, к-рое запаздывает по фазе из-за конечной проводимости стенок камеры), микроволновая неустойчивость (взаимодействие с объектами, способными возбуждаться на высоких частотах) и др.

Ускорители со встречными пучками (коллайдеры) . При генерации новых частиц в акте соударения должна выделяться энергия, равная или превосходящая энергию покоя рождающихся частиц, т.е. сотни МэВ, а иногда многие десятки ГэВ. При таких больших энерговыделениях теряет значение не только хим. связь частиц, входящих в состав мишени, но и связь нуклонов в ядре, так что соударение происходит с одиночными нуклонами или даже с одиночными , составляющими нуклон. Т. н. кумулятивные процессы , к-рые можно рассматривать как одноврем. столкновение ускоренной частицы с двумя или неск. нуклонами, представляют научный интерес, но при высоких энергиях наблюдаются крайне редко.

Как уже отмечалось выше, при соударении частиц в кол-лайдерах может реализоваться вся набранная при ускорении энергия, в то время как при соударении быстрого протона с нуклоном неподвижной мишени используется только часть этой энергии. Так, для генерации J /y-мезона энергия протона должна в 3,7 раз превышать энергию покоя J /y-мезона, а для генерации Z 0 -бозона нужно 50-кратное превышение энергии. Генерация тяжёлых частиц на неподвижных мишенях оказывается поэтому катастрофически невыгодной, и необходимо переходить к коллай-дерам. В коллайдерах частицы могут двигаться навстречу друг другу или в одном кольце (частицы и античастицы), или в двух пересекающихся кольцах.

Техника работы с накопит. кольцами, в к-рых движутся встречные пучки, очень сложна. Кол-во ядерных реакций, происходящих в единицу времени, оказывается в тысячи раз меньше, чем при неподвижных мишенях, из-за крайней разреженности пучков. Эффективность коллайдеров принято характеризовать их светимостью ,т. е. числом, на к-рое нужно умножить эфф. сечение изучаемой реакции, чтобы получить число таких реакций в единицу времени. Светимость пропорц. произведению интенсивностей сталкивающихся пучков и обратно пропорц. площади сечения пучков (если они равны). Сталкивающиеся пучки должны, т. о., содержать много частиц и занимать небольшие объёмы в фазовом пространстве. Охлаждение фазового объёма электронных и позитронных пучков из-за синхротрон-ного излучения обсуждалось выше. В то же время фазовый объём протонных пучков по мере ускорения уменьшается всего как 1, т. е. совершенно недостаточно. А объём, занятый антипротонными пучками, оказывается очень большим уже при их генерации и мало уменьшается в дальнейшем, т. к. антипротоны образуются при высокой энергии (неск. ГэВ). Поэтому перед соударениями антипротонные пучки должны накапливаться и о х л а ж д а т ьс я, т. е. сжиматься в фазовом пространстве.

Существует два способа охлаждения пучков тяжёлых частиц (протонов, антипротонов, ионов)-электронный и стохастический. Э л е к т р о н н о е о х л а ж д е н и е происходит при взаимодействии охлаждаемых пучков с пучком "холодных" электронов, летящим на нек-ром общем участке вместе с охлаждаемыми частицами и имеющим ту же ср. скорость. (Темп-рой пучка наз. средняя энергия его частиц, измеренная в системе координат, движущейся вместе с пучком.)

С т о х а с т и ч е с к о е о х л а ж д е н и е основано на том, что число одновременно охлаждаемых частиц не очень велико. Если внутри устройства, измеряющего координаты пучка, находится всего одна частица, то её отклонение может быть измерено датчиком, а затем исправлено корректором. Если же внутри измерит. устройства окажется неск. частиц, то датчик реагирует на положение их электрич. центра тяжести и имеет место не коррекция, а демпфирование колебаний (при N частицах в устройстве корректируется один, а не N параметров). Стохастич. охлаждение происходит постепенно и требует большого числа оборотов.

Отметим, что электронное охлаждение оказывается более эффективным при малых энергиях пучка, а стохастическое-при не слишком большом числе частиц.

Перспективы развития ускорителей . Среди проектов крупных ускорителей, к-рые находятся в стадии разработки, строительства или уже вступили в строй, можно перечислить следующие.

В России (г. Троицк, Моск. обл.) заканчивается сооружение "мезонной фабрики" на энергию 600 МэВ со ср. током 70 мкА. В 1993 она уже выдавала пучок с энергией 430 МэВ. Для произ-ва изотопов используется пучок протонов с энергией 160 МэВ и со ср. током 100 мкА. В Про-твино ведётся сооружение ускорительно-накопительного комплекса (УНК), рассчитанного на ускорение протонов до 3 ТэВ. УНК располагается в подземном туннеле с периметром 21 км. Ожидается интенсивность частиц в импульсе 5 . 10 12 .

В ФРГ (Гамбург) вступил в строй У. на встречных пучках (HERA), предназначенный для изучения взаимодействия протонов (820 ГэВ) с электронами и позитронами (30 ГэВ). Проектная светимость ~2 . 10 31 см -2. с -1 . Протонный синхротрон содержит сверхпроводящие магниты, а электронный - обычные (что.бы не увеличивать потери на син-хротронное излучение). В оснащении этого У. и в работе на нём принимают участие 37 ин-тов из разных стран.

В Германии разрабатывается также проект линейного коллайдера DESY с энергией частиц 250x250 ГэВ (1-й вариант) или 500 х 500 ГэВ (2-й вариант). В ЦЕРНе (Швей-цария) в тоннеле кольцевого электронно-позитронного У. (LEP) начинается сооружение коллайдера для тяжёлых частиц LHC (Large Hadron Collider). На нём можно будет изучать столкновения протонов (2x7 ТэВ), протонов и электронов, протонов и ионов (вкл. свинец, 1148 ТэВ).

Ускорение тяжёлых ионов может производиться на нук-лотроне (Дубна, Россия). Начиная с 1977 на протонном синхротроне в Дубне ускорялись разл. ионы вплоть до углерода (4,2 ГэВ/нуклон, а с 1992-до 6 ГэВ/нуклон).

На У. "Сатурн" в Сакле (Франция) ускоряются ионы вплоть до аргона (до 1,15 ГэВ/нуклон). Ускоритель SPS (ЦЕРН) позволяет ускорять ионы кислорода и серы до 200 ГэВ/нуклон.

В США разработан проект наиб. крупного сверхпрово-дящего суперколлайдера (SSC) на энергию 2 х 20 ТэВ. Сооружение этого ускорителя отложено.

В Междунар. комитете по ускорителям рассматриваются ещё более крупные проекты, осуществление к-рых потребует совместных усилий развитых государств. Конкретный проект такого У. ещё не определён. Все осуществляемые и разрабатываемые проекты основаны на известных, хорошо зарекомендовавших себя принципах. Новые методы ускорения, о к-рых говорилось выше, могут в случае успеха полностью изменить эти планы.

Применение ускорителей . Кроме научного У. имеют и практич. применение. Так, линейные У. используются для создания нейтронных генераторов для радиац. испытания материалов, активно обсуждаются электроядерные методы наработки ядерного горючего и ускорения тяжёлых малозарядных ионов для управляемого инерционного термоядерного синтеза. В Лома-Линде (США) заканчивается сооружение специализир. комплекса с протонным синхротроном для лучевой терапии. Аналогичный проект рас-сматривается в России.

Лит.: Коломенский А. А., Лебедев А. Н., Теория циклических ускорителей, М., 1962; Вальднер О. А., Власов А. Д., Шальнов А. В., Линейные ускорители, М., 1969; Брук Г., Циклические ускорители заряженных частиц, пер. с франц., М., 1970; Комар Е. Г., Основы ускорительной техники, М., 1975; Линейные ускорители ионов, под ред. Б. П. Мурина, т. 1-2, М., 1978; Бахрушин Ю. П., Анацкий А. И., Линейные индукционные ускорители, М., 1978; Лебедев А. Н., Шальнов А. В., Основы физики и техники ускорителей, т. 3, М., 1981; Москалев В. А., Бетатроны, М., 1981; Капчинский И. М., Теория линейных резонансных ускорителей, М., 1982. Л. Л. Гольдин .

Содержание статьи

УСКОРИТЕЛЬ ЧАСТИЦ, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов , протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях – для исследования субъядерных процессов и свойств элементарных частиц.

Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.

Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт – это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ » 1,60219Ч 10 –19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (10 12) электронвольт – на крупнейшем в мире ускорителе.

Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами – энергией и интенсивностью пучка частиц.

В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как «обычные», так и криогенные) и сложные системы юстировки и крепления.

ОСНОВНЫЕ ПРИНЦИПЫ

Основная схема ускорения частиц предусматривает три стадии: 1) формирование пучка и его инжекция, 2) ускорение пучка и 3) вывод пучка на мишень или осуществление соударения встречных пучков в самом ускорителе.

Формирование пучка и его инжекция.

Исходным элементом любого ускорителя служит инжектор, в котором имеется источник направленного потока частиц с низкой энергией (электронов, протонов или других ионов) и высоковольтные электроды и магниты, выводящие пучок из источника и формирующие его. В источниках протонов первых ускорителей газообразный водород пропускался через область электрического разряда или вблизи раскаленной нити. В таких условиях атомы водорода теряют свои электроны и остаются одни ядра – протоны. Такой метод (и аналогичный с другими газами) в усовершенствованном виде по-прежнему применяется для получения пучков протонов (и тяжелых ионов).

Источник формирует пучок частиц, который характеризуется средней начальной энергией, током пучка, его поперечными размерами и средней угловой расходимостью. Показателем качества инжектируемого пучка служит его эмиттанс, т.е. произведение радиуса пучка на его угловую расходимость. Чем меньше эмиттанс, тем выше качество конечного пучка частиц с высокой энергией. По аналогии с оптикой ток частиц, деленный на эмиттанс (что соответствует плотности частиц, деленной на угловую расходимость), называют яркостью пучка. Во многих приложениях современных ускорителей требуется максимально возможная яркость пучков.

Ускорение пучка.

Пучок формируется в камерах или инжектируется в одну или несколько камер ускорителя, в которых электрическое поле повышает скорость, а следовательно, и энергию частиц. В первых, простейших ускорителях энергия частиц увеличивалась в сильном электростатическом поле, созданном внутри высоковакуумной камеры. Максимальная энергия, которую при этом удавалось достичь, определялась электрической прочностью изоляторов ускорителя. Во многих современных ускорителях в качестве инжекторов еще используются электростатические ускорители электронов и ионов (вплоть до ионов урана) с энергиями от 30 кэВ до 1 МэВ.

Получение высокого напряжения и сегодня остается сложной технической проблемой. Его можно получать, заряжая группу конденсаторов, соединенных параллельно, а затем подключая их последовательно к последовательности ускорительных трубок. Таким способом в 1932 Дж.Кокрофт и Э.Уолтон получали напряжения до 1 МВ. Существенный практический недостаток этого способа в том, что на внешних элементах системы оказывается высокое напряжение, опасное для экспериментаторов.

Иной способ получения высокого напряжения был изобретен в 1931 Р.Ван-де-Граафом. В генераторе Ван-де-Граафа (рис. 1) лента из диэлектрика переносит электрические заряды от источника напряжения, находящегося под потенциалом земли, к высоковольтному электроду, повышая тем самым его потенциал относительно земли. Однокаскадный генератор Ван-де-Граафа позволяет получать напряжения до 10 МВ. На многокаскадных высоковольтных ускорителях были получены протоны с энергиями до 30 МэВ.

Если требуется не непрерывный пучок, а короткий импульс частиц с высокой энергией, то можно воспользоваться тем, что кратковременно (менее микросекунды) изоляторы способны выдерживать гораздо более высокие напряжения. Импульсные диоды позволяют получать напряжения до 15 МВ на каскад в схемах с очень низким импендансом. Это позволяет получить токи пучка в несколько десятков килоампер, а не в десятки миллиампер, как на электростатических ускорителях.

Обычный способ получения высокого напряжения основан на схеме импульсного генератора Маркса, в которой батарея конденсаторов сначала заряжается параллельно, а затем соединяется последовательно и разряжается через один разрядный промежуток. Высоковольтный импульс генератора поступает в длинную линию, которая формирует импульс, задавая его время нарастания. Линия нагружается электродами, ускоряющими пучок.

При высокочастотном ускоряющем напряжении конструкция ускорителя выдерживает без пробоя гораздо более сильные электрические поля, чем при постоянном напряжении. Однако применение высокочастотных полей для ускорения частиц затрудняется тем, что знак поля быстро меняется и поле оказывается то ускоряющим, то замедляющим. В конце 1920-х были предложены два способа преодоления этой трудности, которые применяются теперь в большинстве ускорителей.

ЛИНЕЙНЫЕ УСКОРИТЕЛИ

Возможность применения высокочастотных электрических полей в длинных многокаскадных ускорителях основана на том, что такое поле изменяется не только во времени, но и в пространстве. В любой момент времени напряженность поля изменяется синусоидально в зависимости от положения в пространстве, т.е. распределение поля в пространстве имеет форму волны. А в любой точке пространства она изменяется синусоидально во времени. Поэтому максимумы поля перемещаются в пространстве с так называемой фазовой скоростью. Следовательно, частицы могут двигаться так, чтобы локальное поле все время их ускоряло.

В линейных ускорительных системах высокочастотные поля были впервые применены в 1929, когда норвежский инженер Р.Видероэ осуществил ускорение ионов в короткой системе связанных высокочастотных резонаторов. Если резонаторы рассчитаны так, что фазовая скорость поля всегда равна скорости частиц, то в процессе своего движения в ускорителе пучок непрерывно ускоряется. Движение частиц в таком случае подобно скольжению серфера на гребне волны. При этом скорости протонов или ионов в процессе ускорения могут сильно увеличиваться. Соответственно этому должна увеличиваться и фазовая скорость волны v фаз. Если электроны могут инжектироваться в ускоритель со скоростью, близкой к скорости света с , то в таком режиме фазовая скорость практически постоянна: v фаз = c .

Другой подход, позволяющий исключить влияние замедляющей фазы высокочастотного электрического поля, основан на использовании металлической конструкции, экранирующей пучок от поля в этот полупериод. Впервые такой способ был применен Э.Лоуренсом в циклотроне (см. ниже ); он используется также в линейном ускорителе Альвареса. Последний представляет собой длинную вакуумную трубу, в которой расположен целый ряд металлических дрейфовых трубок. Каждая трубка последовательно соединена с высокочастотным генератором через длинную линию, вдоль которой со скоростью, близкой к скорости света, бежит волна ускоряющего напряжения (рис. 2). Таким образом, все трубки по очереди оказываются под высоким напряжением. Заряженная частица, вылетающая из инжектора в подходящий момент времени, ускоряется в направлении первой трубки, приобретая определенную энергию. Внутри этой трубки частица дрейфует – движется с постоянной скоростью. Если длина трубки правильно подобрана, то она выйдет из нее в тот момент, когда ускоряющее напряжение продвинулось на одну длину волны. При этом напряжение на второй трубке тоже будет ускоряющим и составляет сотни тысяч вольт. Такой процесс многократно повторяется, и на каждом этапе частица получает дополнительную энергию. Чтобы движение частиц было синхронно с изменением поля, соответственно увеличению их скорости должна увеличиваться длина трубок. В конце концов скорость частицы достигнет скорости, очень близкой к скорости света, и предельная длина трубок будет постоянной.

Пространственные изменения поля налагают ограничение на временную структуру пучка. Ускоряющее поле изменяется в пределах сгустка частиц любой конечной протяженности. Следовательно, протяженность сгустка частиц должна быть мала по сравнению с длиной волны ускоряющего высокочастотного поля. Иначе частицы будут по-разному ускоряться в пределах сгустка. Слишком большой разброс энергии в пучке не только увеличивает трудности фокусировки пучка из-за наличия хроматической аберрации у магнитных линз, но и ограничивает возможности применения пучка в конкретных задачах. Разброс энергий может также приводить к размытию сгустка частиц пучка в аксиальном направлении.

Рассмотрим сгусток нерелятивистских ионов, движущихся с начальной скоростью v 0 . Продольные электрические силы, обусловленные пространственным зарядом, ускоряют головную часть пучка и замедляют хвостовую. Синхронизируя соответствующим образом движение сгустка с высокочастотным полем, можно добиться большего ускорения хвостовой части сгустка, чем головной. Таким согласованием фаз ускоряющего напряжения и пучка можно осуществить фазировку пучка – скомпенсировать дефазирующее влияние пространственного заряда и разброса по энергии. В результате в некотором интервале значений центральной фазы сгустка наблюдаются центрирование и осцилляции частиц относительно определенной фазы устойчивого движения. Это явление, называемое автофазировкой, чрезвычайно важно для линейных ускорителей ионов и современных циклических ускорителей электронов и ионов. К сожалению, автофазировка достигается ценой снижения коэффициента заполнения ускорителя до значений, намного меньших единицы.

В процессе ускорения практически у всех пучков обнаруживается тенденция к увеличению радиуса по двум причинам: из-за взаимного электростатического отталкивания частиц и из-за разброса поперечных (тепловых) скоростей. Первая тенденция ослабевает с увеличением скорости пучка, поскольку магнитное поле, создаваемое током пучка, сжимает пучок и в случае релятивистских пучков почти компенсирует дефокусирующее влияние пространственного заряда в радиальном направлении. Поэтому данный эффект весьма важен в случае ускорителей ионов, но почти несуществен для электронных ускорителей, в которых пучок инжектируется с релятивистскими скоростями. Второй эффект, связанный с эмиттансом пучка, важен для всех ускорителей.

Удержать частицы вблизи оси можно с помощью квадрупольных магнитов. Правда, одиночный квадрупольный магнит, фокусируя частицы в одной из плоскостей, в другой их дефокусирует. Но здесь помогает принцип «сильной фокусировки», открытый Э.Курантом, С.Ливингстоном и Х.Снайдером: система двух квадрупольных магнитов, разделенных пролетным промежутком, с чередованием плоскостей фокусировки и дефокусировки в конечном счете обеспечивает фокусировку во всех плоскостях.

Дрейфовые трубки все еще используются в протонных линейных ускорителях, где энергия пучка увеличивается от нескольких мегаэлектронвольт примерно до 100 МэВ. В первых электронных линейных ускорителях типа ускорителя на 1 ГэВ, сооруженного в Стэнфордском университете (США), тоже использовались дрейфовые трубки постоянной длины, поскольку пучок инжектировался при энергии порядка 1 МэВ. В более современных электронных линейных ускорителях, примером самых крупных из которых может служить ускоритель на 50 ГэВ длиной 3,2 км, сооруженный в Стэнфордском центре линейных ускорителей, используется принцип «серфинга электронов» на электромагнитной волне, что позволяет ускорять пучок с приращением энергии почти на 20 МэВ на одном метре ускоряющей системы. В этом ускорителе высокочастотная мощность на частоте около 3 ГГц генерируется большими электровакуумными приборами – клистронами.

Протонный линейный ускоритель на самую высокую энергию был построен в Лосаламосской национальной лаборатории в шт. Нью-Мексико (США) в качестве «мезонной фабрики» для получения интенсивных пучков пионов и мюонов. Его медные резонаторы создают ускоряющее поле порядка 2 МэВ/м, благодаря чему он дает в импульсном пучке до 1 мА протонов с энергией 800 МэВ.

Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы. Самый большой сверхпроводящий протонный линейный ускоритель служит инжектором ускорителя на встречных пучках ГЕРА в лаборатории Немецкого электронного синхротрона (ДЕЗИ) в Гамбурге (Германия).

ЦИКЛИЧЕСКИЕ УСКОРИТЕЛИ

Протонный циклотрон.

Существует весьма элегантный и экономичный способ ускорения пучка путем многократного сообщения ему небольших порций энергии. Для этого с помощью сильного магнитного поля пучок заставляют двигаться по круговой орбите и много раз проходить один и тот же ускоряющей промежуток. Впервые этот способ был реализован в 1930 Э.Лоуренсом и С.Ливингстоном в изобретенном ими циклотроне. Как и в линейном ускорителе с дрейфовыми трубками, пучок экранируется от действия электрического поля в тот полупериод, когда оно действует замедляюще. Заряженная частица с массой m и зарядом q , движущаяся со скоростью v в магнитном поле H , направленном перпендикулярно ее скорости, описывает в этом поле окружность радиусом R = mv /qH . Поскольку ускорение приводит к увеличению скорости v , возрастает и радиус R . Таким образом, протоны и тяжелые ионы движутся по раскручивающейся спирали все возрастающего радиуса. При каждом обороте по орбите пучок проходит через зазор между дуантами – высоковольтными полыми D-образными электродами, где на него действует высокочастотное электрическое поле (рис. 3). Лоуренс сообразил, что время между прохождениями пучка через зазор в случае нерелятивистских частиц остается постоянным, поскольку возрастание их скорости компенсируется увеличением радиуса. На протяжении той части периода обращения, когда высокочастотное поле имеет неподходящую фазу, пучок находится вне зазора. Частота обращения дается выражением

где f – частота переменного напряжения в МГц, Н – напряженность магнитного поля в Тл, а mc 2 – масса частицы в МэВ. Если величина H постоянна в той области, где происходит ускорение, то частота f , очевидно, не зависит от радиуса .

Для ускорения ионов до высоких энергий необходимо лишь, чтобы магнитное поле и частота высоковольтного напряжения отвечали условию резонанса; тогда частицы будут дважды за оборот проходить через зазор между дуантами в нужный момент времени. Для ускорения пучка до энергии 50 МэВ при ускоряющем напряжении 10 кэВ потребуется 2500 оборотов. Рабочая частота протонного циклотрона может составлять 20 МГц, так что время ускорения – порядка 1 мс.

Как и в линейных ускорителях, частицы в процессе ускорения в циклотроне должны фокусироваться в поперечном направлении, иначе все они, кроме инжектированных со скоростями, параллельными полюсным наконечникам магнита, выпадут из цикла ускорения. В циклотроне возможность ускорения частиц с конечным разбросом по углам обеспечивается приданием магнитному полю особой конфигурации, при которой на частицы, выходящие из плоскости орбиты, действуют силы, возвращающие их в эту плоскость.

К сожалению, по требованиям стабильности сгустка ускоряемых частиц фокусирующая компонента магнитного поля должна уменьшаться с увеличением радиуса. А это противоречит условию резонанса и приводит к эффектам, ограничивающим интенсивность пучка. Другой существенный фактор, снижающий возможности простого циклотрона, – релятивистский рост массы, как необходимое следствие увеличения энергии частиц:

В случае ускорения протонов синхронизм будет нарушаться из-за релятивистского прироста массы примерно при 10 МэВ. Один из способов поддержания синхронизма – модулировать частоту ускоряющего напряжения так, чтобы она уменьшалась по мере увеличения радиуса орбиты и увеличения скорости частиц. Частота должна изменяться по закону

Такой синхроциклотрон может ускорять протоны до энергии в несколько сот мегаэлектровольт. Например, если напряженность магнитного поля равна 2 Тл, то частота должна уменьшаться примерно от 32 МГц в момент инжекции до 19 МГц и менее при достижении частицами энергии 400 МэВ. Такое изменение частоты ускоряющего напряжения должно происходить на протяжении нескольких миллисекунд. После того как частицы достигают высшей энергии и выводятся из ускорителя, частота возвращается к своему исходному значению и в ускоритель вводится новый сгусток частиц.

Но даже при оптимальной конструкции магнита и наилучших характеристиках системы подвода высокочастотной мощности возможности циклотронов ограничиваются практическими соображениями: для удержания на орбите ускоряемых частиц с высокой энергией нужны чрезвычайно большие магниты. Так, масса магнита циклотрона на 600 МэВ, сооруженного в лаборатории ТРИУМФ в Канаде, превышает 2000 т, и он потребляет электроэнергию порядка нескольких мегаватт. Стоимость же сооружения сихроциклотрона примерно порпорциональна кубу радиуса магнита. Поэтому для достижения более высоких энергий при практически приемлемых затратах требуются новые принципы ускорения.

Протонный синхротрон.

Высокая стоимость циклических ускорителей связана с большим радиусом магнита. Но можно удерживать частицы на орбите с постоянным радиусом, увеличивая напряженность магнитного поля по мере увеличения их энергии. Линейный ускоритель инжектирует на эту орбиту пучок частиц сравнительно небольшой энергии. Поскольку удерживающее поле необходимо лишь в узкой области вблизи орбиты пучка, нет необходимости в магнитах, охватывающих всю площадь орбиты. Магниты расположены лишь вдоль кольцевой вакуумной камеры, что дает огромную экономию средств.

Такой подход был реализован в протонном синхротроне. Первым ускорителем подобного типа был «Космотрон» на энергию 3 ГэВ (рис. 4), который начал работать в Брукхейвенской национальной лаборатории в 1952 в США; за ним вскоре последовал «Беватрон» на энергию 6 ГэВ, построенный в Лаборатории им. Лоуренса Калифорнийского университета в Беркли (США). Сооруженный специально для обнаружения антипротона, он работал на протяжении 39 лет, продемонстрировав долговечность и надежность ускорителей частиц.

В синхротронах первого поколения, построенных в США, Великобритании, Франции и СССР, фокусировка была слабой. Поэтому была велика амплитуда радиальных колебаний частиц в процессе их ускорения. Ширина вакуумных камер составляла примерно 30 см, и в этом все-таки большом объеме требовалось тщательно контролировать конфигурацию магнитного поля.

В 1952 было сделано открытие, позволившее резко уменьшить колебания пучка, а следовательно, и размеры вакуумной камеры. Это был принцип сильной, или жесткой, фокусировки. В современных протонных синхротронах со сверхпроводящими квадрупольными магнитами, расположенными по схеме сильной фокусировки, вакуумная камера может быть меньше 10 см в поперечнике, что приводит к значительному уменьшению размеров, стоимости и потребляемой мощности фокусирующих и отклоняющих магнитов.

Первым синхротроном, основанным на этом принципе, был «Синхротрон с переменным градиентом» на энергию 30 ГэВ в Брукхейвене. Аналогичная установка была построена в лаборатории Европейской организации ядерных исследований (ЦЕРН) в Женеве. В середине 1990-х годов оба ускорителя все еще находились в эксплуатации. Апертура «Синхротрона с переменным градиентом» была примерно в 25 раз меньше, чем у «Космотрона». Потребляемая магнитом мощность при энергии 30 ГэВ примерно соответствовала мощности, потребляемой магнитом «Космотрона» при 3 ГэВ. «Синхротрон с переменным градиентом» ускорял 6Ч 10 13 протонов в импульсе, что соответствовало самой высокой интенсивности среди установок этого класса. Фокусировка в этом ускорителе осуществлялась теми же магнитами, что и отклоняли пучок; это достигалось приданием полюсам магнита формы, показанной на рис. 5. В современных ускорителях для отклонения и фокусировки пучка, как правило, используются отдельные магниты.

Таким образом, в экспериментах с покоящейся мишенью на «Теватроне» полезная энергия составляет всего лишь 43 ГэВ.

Стремление использовать в исследованиях частиц как можно более высокие энергии привело к созданию в ЦЕРНе и Лаборатории им. Э.Ферми протон-антипротонных коллайдеров, а также большого числа установок в разных странах со встречными электрон-позитронными пучками. В первом протонном коллайдере соударения протонов и антипротонов с энергиями 26 ГэВ происходили в кольце с длиной окружности 1,6 км (рис. 6). За несколько дней удавалось накопить пучки с током до 50 А.

В настоящее время коллайдером с самой высокой энергией является «Теватрон», на котором проводятся эксперименты при соударении пучка протонов, имеющих энергию 1 ТэВ, со встречным пучком антипротонов той же энергии. Для таких экспериментов необходимы антипротоны, которые можно получить, бомбардируя пучком протонов высокой энергии из «Главного кольца» металлическую мишень. Рождающиеся в этих соударениях антипротоны накапливают в отдельном кольце при энергии 8 ГэВ. Когда накоплено достаточно много антипротонов, их инжектируют в «Главное кольцо», ускоряют до 150 ГэВ и далее инжектируют в «Теватрон». Здесь протоны и антипротоны одновременно ускоряют до полной энергии, а затем осуществляют их соударения. Суммарный импульс сталкивающихся частиц равен нулю, так что вся энергия 2Е оказывается полезной. В случае «Теватрона» она достигает почти 2 ТэВ.

Наибольшая энергия среди электрон-позитронных коллайдеров была достигнута на «Большом электрон-позитронном накопительном кольце» в ЦЕРНе, где энергия сталкивающихся пучков на первом этапе составляла 50 ГэВ на пучок, а затем была увеличена до 100 ГэВ на пучок. В ДЕЗИ сооружен коллайдер ГЕРА, в котором происходят соударения электронов с протонами.

Этот огромный выигрыш в энергии достигается ценой значительного уменьшения вероятности столкновений между частицами встречных пучков низкой плотности. Частота столкновений определяется светимостью, т.е. числом столкновений в секунду, сопровождающихся реакцией данного типа, имеющей определенное сечение. Светимость линейно зависит от энергии и тока пучка и обратно пропорциональна его радиусу. Энергию пучка коллайдера выбирают в соответствии с энергетическим масштабом исследуемых физических процессов.

Для обеспечения наибольшей светимости необходимо добиться максимально возможной плотности пучков в месте их встречи. Поэтому главной технической задачей при проектировании коллайдеров является фокусировка пучков в месте их встречи в пятно очень малых размеров и увеличение тока пучка. Для достижения нужной светимости могут потребоваться токи более 1 А.

Еще одна исключительно сложная техническая проблема связана с необходимостью обеспечивать в камере коллайдера сверхвысокий вакуум. Поскольку столкновения между частицами пучков происходят сравнительно редко, соударения с молекулами остаточного газа могут существенно ослаблять пучки, уменьшая вероятность изучаемых взаимодействий. Кроме того, рассеяние пучков на остаточном газе дает нежелательный фон в детекторе, способный замаскировать изучаемый физический процесс. Вакуум в камере коллайдера должен лежать в пределах 10 –9 –10 –7 Па (10 –11 –10 –9 мм рт. ст.) в зависимости от светимости.

При более низких энергиях можно ускорять более интенсивные пучки электронов, что дает возможность исследовать редкие распады В - и К -мезонов, обусловленные электрослабыми взаимодействиями. Ряд таких установок, иногда называемых «фабриками ароматов», сооружается в настоящее время в США, Японии и Италии. Такие установки имеют два накопительных кольца – для электронов и для позитронов, пересекающихся в одной или двух точках, – областях взаимодействия. В каждом кольце содержится много сгустков частиц при полном токе более 1 А. Энергии пучков выбираются с таким расчетом, чтобы полезная энергия соответствовала резонансу, который распадается на изучаемые короткоживущие частицы – В - или К -мезоны. В основе конструкции этих установок лежат электронный синхротрон и накопительные кольца.

Линейные коллайдеры.

Энергии циклических электрон-позитронных коллайдеров ограничиваются интенсивным синхротронным излучением, которое испускают пучки ускоренных частиц (см. ниже ). Этого недостатка нет у линейных коллайдеров, в которых синхротронное излучение не сказывается на процессе ускорения. Линейный коллайдер состоит их двух линейных ускорителей на высокие энергии, высокоинтенсивные пучки которых – электронный и позитронный – направлены навстречу друг другу. Пучки встречаются и соударяются только один раз, после чего отводятся в поглотители.

Первым линейным коллайдером является «Стэнфордский линейный коллайдер», использующий Стэнфордский линейный ускоритель длиной 3,2 км и работающий при энергии 50 ГэВ. В системе этого коллайдера сгустки электронов и позитронов ускоряются в одном и том же линейном ускорителе и разделяются по достижении пучками полной энергии. Затем электронные и позитронные сгустки транспортируются по отдельным дугам, форма которых напоминает трубки медицинского стетоскопа, и фокусируются до диаметра около 2 мкм в области взаимодействия.

Новые технологии.

Поиски более экономичных методов ускорения привели к созданию новых ускорительных систем и высокочастотных генераторов большой мощности, работающих в диапазоне частот от 10 до 35 ГГц. Светимость электрон-позитронных коллайдеров должна быть исключительно высокой, поскольку сечение процессов убывает как квадрат энергии частиц. Соответственно этому и плотности пучков должны быть чрезвычайно высокими. В линейном коллайдере на энергию порядка 1 ТэВ размеры пучков могут достигать 10 нм, что намного меньше размеров пучка в «Стэнфордском линейном коллайдере» (2 мкм). При столь малых размерах пучков для точного согласования фокусирующих элементов необходимы очень мощные стабильные магниты со сложными электронными автоматическими регуляторами. При прохождении электронного и позитронного пучков друг через друга их электрическое взаимодействие нейтрализуется, а магнитное усиливается. В результате магнитные поля могут достигать 10 000 Тл. Такие гигантские поля способны сильно деформировать пучки и приводить к большому энергетическому разбросу вследствие генерации синхротронного излучения. Эти эффекты наряду с экономическими соображениями, связанными с сооружением все более и более протяженных машин, будут ставить предел энергии, достижимой на электронно-позитронных коллайдерах.

ЭЛЕКТРОННЫЕ НАКОПИТЕЛИ

Электронные синхротроны основаны на тех же принципах, что и протонные. Однако благодаря одной важной особенности они проще в техническом отношении. Малость массы электрона позволяет инжектировать пучок при скоростях, близких к скорости света. Поэтому дальнейшее увеличение энергии не связано с заметным увеличением скорости, и электронные синхротроны могут работать при фиксированной частоте ускоряющего напряжения, если пучок инжектируется с энергией около 10 МэВ.

Однако это преимущество сводится на нет другим следствием малости электронной массы. Поскольку электрон движется по круговой орбите, он движется с ускорением (центростремительным), а потому испускает фотоны – излучение, которое называется синхротронным. Мощность Р синхротронного излучения пропорциональна четвертой степени энергии пучка Е и току I , а также обратно пропорциональна радиусу кольца R , так что она пропорциональна величине (E /m ) 4 IR –1 . Эта энергия, теряемая при каждом обороте электронного пучка по орбите, должна компенсироваться высокочастотным напряжением, подаваемым на ускоряющие промежутки. В рассчитанных на большие интенсивности «фабриках аромата» такие потери мощности могут достигать десятков мегаватт.

Циклические ускорители типа электронных синхротронов могут использоваться и как накопители больших циркулирующих токов с постоянной высокой энергией. Такие накопители имеют два основных применения: 1) в исследованиях ядра и элементарных частиц методом встречных пучков, о чем говорилось выше, и 2) как источники синхротронного излучения, используемые в атомной физике, материаловедении, химии, биологии и медицине.

Средняя энергия фотонов синхротронного излучения пропорциональна (E /m ) 3 R –1 . Таким образом, электроны с энергией порядка 1 ГэВ, циркулирующие в накопителе, испускают интенсивное синхротронное излучение в ультрафиолетовом и рентгеновском диапазонах. Большая часть фотонов испускается в пределах узкого вертикального угла порядка m /E . Поскольку радиус электронных пучков в современных накопителях на энергию порядка 1 ГэВ измеряется десятками микрометров, пучки испускаемого ими рентгеновского излучения характеризуются высокой яркостью, а потому могут служить мощным средством исследования структуры вещества. Излучение испускается по касательной к криволинейной траектории электронов. Следовательно, каждый отклоняющий магнит электронного накопительного кольца, когда через него проходит сгусток электронов, создает разворачивающийся «прожекторный луч» излучения. Оно выводится по длинным вакуумным каналам, касательным к основной вакуумной камере накопителя. Расположенные вдоль этих каналов щели и коллиматоры формируют узкие пучки, из которых далее с помощью монохроматоров выделяется нужный диапазон энергий рентгеновского излучения.

Первыми источниками синхротронного излучения были установки, первоначально сооруженные для решения задач физики высоких энергий. Примером может служить Стэнфордский позитрон-электронный накопитель на энергию 3 ГэВ в Стэнфордской лаборатории синхротронного излучения. На этой установке в свое время были открыты «очарованные» мезоны.

Первые источники синхротронного излучения не обладали той гибкостью, которая позволяла бы им удовлетворять разнообразным нуждам сотен пользователей. Быстрый рост потребности в синхротронном излучении с высоким потоком и большой интенсивностью пучка вызвал к жизни источники второго поколения, спроектированные с учетом потребностей всех возможных пользователей. В частности, были выбраны системы магнитов, уменьшающие эмиттанс электронного пучка. Малый эмиттанс означает меньшие размеры пучка и, следовательно, более высокую яркость источника излучения. Типичными представителями этого поколения явились накопители в Брукхейвене, служившие источниками рентгеновского излучения и излучения вакуумной ультрафиолетовой области спектра.

Яркость излучения можно также увеличить, заставив пучок двигаться по синусоидальной траектории в периодической магнитной структуре и затем объединяя излучение, возникающее при каждом изгибе. Ондуляторы – магнитные структуры, обеспечивающие подобное движение, представляют собой ряд магнитных диполей, отклоняющих пучок на небольшой угол, расположенных по прямой на оси пучка. Яркость излучения такого ондулятора может в сотни раз превышать яркость излучения, возникающего в отклоняющих магнитах.

В середине 1980-х годов начали создаваться источники синхротронного излучения третьего поколения с большим числом таких ондуляторов. Среди первых источников третьего поколения можно отметить «Усовершенствованный источник света» с энергией 1,5 ГэВ в Беркли, генерирующий мягкое рентгеновское излучение, а также «Усовершенствованный источник фотонов» с энергией 6 ГэВ в Аргоннской национальной лаборатории (США) и синхротрон на энергию 6 ГэВ в Европейском центре синхротронного излучения в Гренобле (Франция), которые используются как источники жесткого рентгеновского излучения. После успешного сооружения этих установок был создан ряд источников синхротронного излучения и в других местах.

Новый шаг в направлении большей яркости в диапазоне от инфракрасного до жесткого рентгеновского излучения связан с использованием в системе отклоняющих магнитов «теплых» магнитных диполей с напряженностью магнитного поля около 1,5 Тл и гораздо более коротких сверхпроводящих магнитных диполей с полем в несколько тесла. Такой подход реализуется в новом источнике синхротронного излучения, создаваемом в институте П.Шеррера в Швейцарии, и при модернизации источника в Беркли.

Применение синхротронного излучения в научных исследованиях получило большой размах и продолжает расширяться. Исключительная яркость таких пучков рентгеновского излучения позволяет создать новое поколение рентгеновских микроскопов для изучения биологических систем в их нормальной водной среде. Открывается возможность быстрого анализа структуры вирусов и белков для разработки новых фармацевтических препаратов с узкой направленностью действия на болезнетворные факторы и минимальными побочными эффектами. Яркие пучки рентгеновского излучения могут служить мощными микрозондами для выявления самых ничтожных количеств примесей и загрязнений. Они дают возможность очень быстро анализировать экологические пробы при исследовании путей загрязнения окружающей среды. Их можно также использовать для оценки степени чистоты больших кремниевых пластин перед дорогостоящим процессом изготовления очень сложных интегральных схем, и они открывают новые перспективы для метода литографии, позволяя в принципе создавать интегральные схемы с элементами меньше 100 нм.

УСКОРИТЕЛИ В МЕДИЦИНЕ

Ускорители играют важную практическую роль в медицинской терапии и диагностике. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным.

Ускоритель заряженных частиц - это устройство, в котором создается пучок электрически заряженных атомных или движущихся с околосветовыми скоростями. В основу его работы положено увеличение их энергии электрическим полем и изменение траектории - магнитным.

Для чего нужны ускорители заряженных частиц?

Данные устройства нашли широкое применение в различных областях науки и промышленности. На сегодняшний день во всем мире их насчитывается более 30 тысяч. Для физика ускорители заряженных частиц служат инструментом фундаментальных исследований структуры атомов, характера ядерных сил, а также свойств ядер, которые в природе не встречаются. К последним относятся трансурановые и другие неустойчивые элементы.

С помощью разрядной трубки стало возможным определение удельного заряда. Ускорители заряженных частиц также используются для производства радиоизотопов, в промышленной радиографии, лучевой терапии, для стерилизации биологических материалов, а также в Самые большие установки применяются в исследованиях фундаментальных взаимодействий.

Время жизни заряженных частиц, покоящихся относительно ускорителя, меньше, чем у частиц, разогнанных до скоростей, близких к Это подтверждает относительность промежутков времени СТО. Например, в ЦЕРН было достигнуто увеличение времени жизни мюонов на скорости 0,9994c в 29 раз.

В данной статье рассматривается то, как устроен и работает ускоритель заряженных частиц, его развитие, различные типы и отличительные черты.

Принципы ускорения

Независимо от того, какие ускорители заряженных частиц вам известны, все они обладают общими элементами. Во-первых, все они должны иметь источник электронов в случае телевизионного кинескопа или электронов, протонов и их античастиц в случае более крупных установок. Кроме того, все они должны иметь электрические поля для ускорения частиц и магнитные поля для управления их траекторией. Кроме того, вакуум в ускорителе заряженных частиц (10 -11 мм рт. ст.), т. е. минимальное количество остаточного воздуха, необходим для обеспечения длительного времени жизни пучков. И, наконец, все установки должны обладать средствами регистрации, подсчета и измерения ускоренных частиц.

Генерация

Электроны и протоны, которые наиболее часто используются в ускорителях, встречаются во всех материалах, но сперва их нужно из них выделить. Электроны, как правило, генерируются точно так же, как в кинескопе - в устройстве, которое называется «пушкой». Она представляет собой катод (отрицательный электрод) в вакууме, который нагревается до состояния, когда электроны начинают отрываться от атомов. Отрицательно заряженные частицы притягиваются к аноду (положительному электроду) и проходят через выпускное отверстие. Сама пушка также является простейшим ускорителем, так как электроны движутся под действием электрического поля. Напряжение между катодом и анодом, как правило, находится в пределах 50-150 кВ.

Помимо электронов, во всех материалах содержатся протоны, но из одиночных протонов состоят лишь ядра атомов водорода. Поэтому источником частиц для является газообразный водород. В этом случае газ ионизируется и протоны выходят через отверстие. В больших ускорителях протоны часто образуются в виде отрицательных ионов водорода. Они представляют собой атомы с дополнительным электроном, которые являются продуктом ионизации двухатомного газа. С отрицательно заряженными ионами водорода на начальных этапах работать легче. Потом их пропускают через тонкую фольгу, которая лишает их электронов перед финальной стадией ускорения.

Разгон

Как работают ускорители заряженных частиц? Ключевой особенностью любого из них является электрическое поле. Простейший пример - равномерное статическое поле между положительными и отрицательным электрическими потенциалами, подобное тому, которое существует между выводами электрической батареи. В таком поле электрон, несущий отрицательный заряд, подвержен действию силы, которая направляет его к положительному потенциалу. Она ускоряет его, и, если нет ничего, что бы этому препятствовало, его скорость и энергия возрастают. Электроны, движущиеся в сторону положительного потенциала по проводу или даже в воздухе, сталкиваются с атомами и теряют энергию, но если они находятся в вакууме, то ускоряются по мере приближения к аноду.

Напряжение между начальным и конечным положением электрона определяет приобретенную им энергию. При движении через разность потенциалов в 1 В она равна 1 электрон-вольту (эВ). Это эквивалентно 1,6 × 10 -19 джоуля. Энергия летящего комара в триллион раз больше. В кинескопе электроны разгоняются напряжением свыше 10 кВ. Многие ускорители достигают гораздо более высоких энергий, измеряемых мега-, гига- и тераэлектрон-вольтами.

Разновидности

Некоторые самые ранние виды ускорителей заряженных частиц, такие как умножитель напряжения и генератор Ван-де-Граафа, использовали постоянные электрические поля, создаваемые потенциалами до миллиона вольт. С такими высокими напряжениями работать нелегко. Более практичной альтернативой является повторяющееся действие слабых электрических полей, создаваемых низкими потенциалами. Это принцип используется в двух типах современных ускорителей - линейных и циклических (главным образом в циклотронах и синхротронах). Линейные ускорители заряженных частиц, кратко говоря, пропускают их один раз через последовательность ускоряющих полей, в то время как в циклическом они многократно движутся по круговой траектории через относительно небольшие электрические поля. В обоих случаях конечная энергия частиц зависит от суммарного действия полей, так что многие малые «толчки» складываются вместе, чтобы дать совокупный эффект одного большого.

Повторяющийся структура линейного ускорителя для создания электрических полей естественным образом предполагает использование переменного, а не постоянного напряжения. Положительно заряженные частицы ускоряются к отрицательному потенциалу и получают новый толчок, если проходят мимо положительного. На практике напряжение должно изменяться очень быстро. Например, при энергии 1 МэВ протон движется на очень высоких скоростях, составляющих 0,46 скорости света, проходя 1,4 м за 0,01 мс. Это означает, что в повторяющейся структуре длиной в несколько метров, электрические поля должны менять направление с частотой, по меньшей мере, 100 МГц. Линейные и циклические ускорители заряженных частиц, как правило, разгоняют их с помощью переменных электрических полей частотой от 100 до 3000 МГц, т. е. в пределах от радиоволн до микроволн.

Электромагнитная волна является комбинацией переменных электрических и магнитных полей, колеблющихся перпендикулярно друг к другу. Ключевым моментом ускорителя является настройка волны таким образом, чтобы при прибытии частицы электрическое поле было направлено в соответствии с вектором ускорения. Это может быть сделано с помощью стоячей волны - комбинации волн, движущихся в противоположных направлениях в замкнутом пространстве, как звуковые волны в органной трубе. Альтернативным вариантом для очень быстро перемещающихся электронов, скорость которых приближается к скорости света, является бегущая волна.

Автофазировка

Важным эффектом при ускорении в переменном электрическом поле является «автофазировка». В одном цикле колебания переменное поле проходит от нуля через максимальное значение снова до нуля, падает до минимума и поднимается к нулю. Таким образом, оно дважды проходит через значение, необходимое для ускорения. Если частица, скорость которой возрастает, прибывает слишком рано, то на нее не будет действовать поле достаточной силы, и толчок будет слабым. Когда она достигнет следующего участка, то опоздает и испытает более сильное воздействие. В результате произойдет автофазировка, частицы будут находиться в фазе с полем в каждой ускоряющей области. Другим эффектом будет их группировка во времени с образованием сгустков, а не непрерывного потока.

Направление пучка

Важную роль в том, как устроен и работает ускоритель заряженных частиц, играют и магнитные поля, так как они могут изменять направление их движения. Это означает, что их можно использовать для «сгибания» пучков по круговой траектории, чтобы они несколько раз проходили через один и тот же ускоряющий участок. В простейшем случае на заряженную частицу, движущуюся под прямым углом к ​​направлению однородного магнитного поля, действует сила, перпендикулярная как к вектору ее перемещения, так и к полю. Это заставляет пучок двигаться по круговой траектории перпендикулярной полю, пока он не выйдет из области ее действия или другая сила не начнет действовать на него. Этот эффект используется в циклических ускорителях, таких как циклотрон и синхротрон. В циклотроне постоянное поле создается большим магнитом. Частицы по мере роста их энергии движутся по спирали наружу, ускоряясь с каждым оборотом. В синхротроне сгустки перемещаются по кольцу с постоянным радиусом, а поле, создаваемое электромагнитами вокруг кольца, увеличивается, поскольку частицы ускоряются. Магниты, обеспечивающие «изгиб», представляют собой диполи с северным и южным полюсами, согнутыми в виде подковы таким образом, что пучок может проходить между ними.

Второй важной функцией электромагнитов является концентрация пучков, чтобы они были настолько узкими и интенсивными, насколько это возможно. Простейшая форма фокусирующего магнита - с четырьмя полюсами (двумя северными и двумя южными), расположенными напротив друг друга. Они толкают частицы к центру в одном направлении, но позволяют им распространяться в перпендикулярном. Квадрупольные магниты фокусируют луч по горизонтали, позволяя ему выйти из фокуса вертикально. Для этого они должны использоваться попарно. Для более точной фокусировки также используются более сложные магниты с большим числом полюсов (6 и 8).

Поскольку энергия частиц возрастает, сила магнитного поля, направляющая их, увеличивается. Это удерживает пучок на одной траектории. Сгусток вводят в кольцо и ускоряют до необходимой энергии, прежде чем он будет выведен и использован в экспериментах. Отвод достигается за счет электромагнитов, которые включаются, чтобы вытолкнуть частицы из синхротронного кольца.

Столкновение

Ускорители заряженных частиц, используемые в медицине и промышленности, в основном производят пучок для конкретной цели, например, для лучевой терапии или имплантации ионов. Это означает, что частицы используются один раз. В течение многих лет то же самое было верно для ускорителей, применяемых в фундаментальных исследованиях. Но в 1970 годах были разработаны кольца, в которых два пучка циркулируют в противоположных направлениях и сталкиваются по всему контуру. Основным преимуществом таких установок является то, что при лобовом столкновении энергия частиц переходит непосредственно в энергию взаимодействия между ними. Это контрастирует с тем, что происходит, когда пучок сталкивается с покоящимся материалом: в этом случае большая часть энергии уходит на приведение материала мишени в движение, в соответствии с принципом сохранения импульса.

Некоторые машины со встречными пучками построены с двумя кольцами, пересекающимися в двух и более местах, в которых в противоположных направлениях циркулировали частицы одного типа. Более распространены коллайдеры с частицами и античастицами. Античастица имеет противоположный заряд связанной с ней частицы. Например, позитрон заряжен положительно, а электрон - отрицательно. Это означает, что поле, которое ускоряет электрон, замедляет позитрон, движущийся в том же направлении. Но если последний перемещается в противоположную сторону, он ускорится. Аналогично электрон, движущийся через магнитное поле, будет изгибаться налево, а позитрон - вправо. Но если позитрон перемещается навстречу, то его путь будет по-прежнему отклоняться вправо, но по той же кривой, что и электрон. Вместе это означает, что данные частицы могут двигаться по кольцу синхротрона благодаря одним и тем же магнитам и ускоряться одними и теми же электрическими полями в противоположных направлениях. По этому принципу созданы многие мощнейшие коллайдеры на встречных пучках, т. к. требуется только одно кольцо ускорителя.

Луч в синхротроне не движется непрерывно, а объединен в «сгустки». Они могут иметь несколько сантиметров в длину и десятую долю миллиметра в диаметре, и содержат около 10 12 частиц. Это небольшая плотность, поскольку в веществе подобных размеров содержится около 10 23 атомов. Поэтому, когда пучки пересекаются со встречными, существует лишь небольшая вероятность того, что частицы будут взаимодействовать друг с другом. На практике сгустки продолжают движение по кольцу и встречаются снова. Глубокий вакуум в ускорителе заряженных частиц (10 -11 мм рт. ст.) необходим для того, чтобы частицы могли циркулировать в течение многих часов без столкновения с молекулами воздуха. Поэтому кольца еще называют накопительными, поскольку пучки фактически хранятся в них в течение нескольких часов.

Регистрация

Ускорители заряженных частиц в большинстве своем могут регистрировать происходящее при попадании частиц в мишень или в другой пучок, движущийся в противоположном направлении. В телевизионном кинескопе электроны из пушки ударяют в люминофор на внутренней поверхности экрана и излучают свет, который, таким образом, воссоздает передаваемое изображение. В ускорителях подобные специализированные детекторы реагируют на рассеянные частицы, но они обычно предназначены для создания электрических сигналов, которые могут быть преобразованы в компьютерные данные и проанализированы с помощью компьютерных программ. Только заряженные элементы создают электрические сигналы, проходя через материал, например, путем возбуждения или ионизации атомов, и могут быть обнаружены непосредственно. Нейтральные частицы, такие как нейтроны или фотоны, можно регистрировать опосредованно через поведение заряженных частиц, которые приводятся ими в движение.

Существует множество специализированных детекторов. Некоторые из них, такие как счетчик Гейгера, просто подсчитывают частицы, а другие используются, например, для записи треков, измерения скорости или количества энергии. Современные детекторы по размеру и технологии варьируют от небольших устройств с зарядовой связью до больших заполненных газом камер с проводами, которые регистрируют ионизированные следы, создаваемые заряженными частицами.

История

Ускорители заряженных частиц в основном разрабатывались для исследований свойств атомных ядер и элементарных частиц. Начиная с открытия британского физика в 1919 году реакции ядра азота и альфа-частицы, все исследования в области ядерной физики до 1932 года проводились с ядрами гелия, выпущенными в результате распада естественных радиоактивных элементов. Природные альфа-частицы обладают кинетической энергией 8 МэВ, но Резерфорд считал, что для наблюдения распада тяжелых ядер необходимо их искусственно ускорить до еще больших значений. В то время это представлялось сложным. Однако расчет, сделанный в 1928 году (в университете Геттингена, Германия), показал, что могут быть использованы ионы со значительно меньшими энергиями, и это стимулировало попытки построить установку, которая обеспечивала пучок, достаточный для ядерных исследований.

Другие события этого периода продемонстрировали принципы, по которым ускорители заряженных частиц строятся и по сей день. Первые успешные эксперименты с искусственно ускоренными ионами были проведены Кокрофтом и Уолтоном в 1932 году в Кембриджском университете. Используя умножитель напряжения, они ускорили протоны до 710 кэВ и показали, что последние реагируют с ядром лития с образованием двух альфа-частиц. К 1931 году в Принстонском университете в Нью-Джерси Роберт Ван-де-Грааф построил первый ременной электростатический генератор высокого потенциала. Умножители напряжения Кокрофта-Уолтона и генераторы Ван-де-Граафа по-прежнему используются в качестве источников энергии для ускорителей.

Принцип линейного резонансного ускорителя был продемонстрирован Рольфом Видероэ в 1928 г. В Рейн-Вестфальском техническом университете в ​​Аахене, Германия, он использовал высокое переменное напряжение для ускорения ионов натрия и калия до энергий, в два раза превышающих сообщаемые им. В 1931 году в Соединенных Штатах Эрнест Лоуренс и его помощник Дэвид Слоун из Университета Калифорнии, Беркли, использовали высокочастотные поля для ускорения ионов ртути до энергий, превышающих 1,2 МэВ. Эта работа дополнила ускоритель тяжелых заряженных частиц Видероэ, но ионные пучки не пригодились в ядерных исследованиях.

Магнитный резонансный ускоритель, или циклотрон, был задуман Лоуренсом как модификация установки Видероэ. Студент Лоренса Ливингстон продемонстрировал принцип циклотрона в 1931 году, произведя ионы с энергией в 80 кэВ. В 1932 году Лоуренс и Ливингстон объявили об ускорении протонов до более 1 МэВ. Позже в 1930-е годы энергия циклотронов достигла около 25 МэВ, а генераторов Ван-де-Граафа - около 4 МэВ. В 1940 году Дональд Керст, применяя результаты тщательных расчетов орбиты к конструкции магнитов, построил в Университете штата Иллинойс первый бетатрон, магнитно-индукционный ускоритель электронов.

Современная физика: ускорители заряженных частиц

После Второй мировой войны в науке ускорения частиц до высоких энергий произошел быстрый прогресс. Его начал Эдвин Макмиллан в Беркли и Владимир Векслер в Москве. В 1945 году они оба независимо друг от друга описали принцип фазовой стабильности. Эта концепция предлагает средства поддержания стабильных орбит частиц в циклическом ускорителе, что сняло ограничение на энергию протонов и позволило создать магнитно-резонансные ускорители (синхротроны) для электронов. Автофазировка, реализация принципа фазовой стабильности, была подтверждена после постройки небольшого синхроциклотрона в Университете Калифорнии и синхротрона в Англии. Вскоре после этого был создан первый протонный линейный резонансный ускоритель. Этот принцип используется во всех больших протонных синхротронах, построенных с тех пор.

В 1947 году Уильям Хансен, в Стэнфордском университете в Калифорнии построил первый линейный ускоритель электронов на бегущей волне, использовавший технологию СВЧ, которая была разработана для радаров во время Второй мировой войны.

Прогресс в исследованиях стал возможным за счет повышения энергии протонов, что привело к построению все больших ускорителей. Эта тенденция была остановлена высокой стоимостью изготовления огромных магнитов кольца. Самый большой весит около 40000 тонн. Способы увеличения энергии без роста размеров машин были про​​демонстрированы в 1952 году Ливингстоном, Курантом и Снайдером в технике знакопеременной фокусировки (иногда называемой сильной фокусировкой). Синхротроны, работающие на этом принципе, используют магниты в 100 раз меньшего размера, чем до этого. Такая фокусировка применяется во всех современных синхротронах.

В 1956 Керст понял, что если два набора частиц удерживать на пересекающихся орбитах, то можно наблюдать их столкновения. Применение этой идеи потребовало накопления ускоренных пучков в циклах, называемых накопительными. Эта технология позволила достичь максимальной энергии взаимодействия частиц.

Лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители , где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители , в которых пучки движутся по замкнутым кривым типа окружностей, проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

Конструкции ускорителей

Высоковольтный ускоритель (ускоритель прямого действия)

Основная статья : Высоковольтный ускоритель

Ускоритель заряженных частиц (электронов) в котором ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Важное преимущество В.У. по сравнению с др. типами ускорителей – возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95%) и возможностью создания установок большой мощности (500кВт и выше) что весьма важно при использовании ускорителей в промышленных целях.

Электростатический ускоритель

Идеологически наиболее простой, линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды.

Разновидности:

  • Ускоритель Ван де Граафа. генератором Ван де Граафа , основанном на механическом переносе зарядов диэлектрической лентой. Максимальные электрические напряжения ~20МВ определяют максимальную энергию частиц ~20МэВ.
  • Каскадный ускоритель. Ускоряющее напряжение создаётся каскадным генератором , который создаёт постоянное ускоряющее высокое напряжение ~5 МВ преобразуя низкое переменное напряжение по схеме диодного умножителя.

Линейные ускорители электронов небольших энергий часто используются, как часть самых разных электровакуумных приборов (электронно-лучевая трубка , кинескоп , рентгеновская трубка и др.).

Циклотрон

Устройство циклотрона. 1 - место поступления частиц, 2 - траектория их движения, 3 - электроды, 4 - источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка.

Идея циклотрона проста. Между двумя полукруглыми полыми электродами, т. н. дуантами , приложено переменное электрическое напряжение. Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица, вращаясь по окружности в магнитном поле, ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем . Понятно, что с увеличением энергии, на каждом обороте, радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.

Циклотрон - первый из циклических ускорителей. Впервые был разработан и построен в году Лоуренсом , за что ему была присуждена Нобелевская премия в году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50МэВ/нуклон.

Бетатрон

Другое название: индукционный ускоритель. Циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10-100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Впервые бетатрон был разработан и создан Видероэ в году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в - гг. в США.

Микротрон

Основная статья : Микротрон

Он же - ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.

Фазотрон (синхроциклотрон)

Принципиальное отличие от циклотрона - изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600-700 МэВ.

Синхрофазотрон

Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Синхротрон

Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полем.

Лазер на свободных электронах (ЛСЭ)

Основная статья : Лазер на свободных электронах

Специализированный источник когерентного рентгеновского излучения.

Линейный ускоритель

Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускоритель, в котором частицы пролетают однократно. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени (!) энергии частиц.

Колла́йдер

Он же ускоритель на встречных пучках. Чисто экспериментальные установки, цель которых - изучение процессов столкновения частиц высоких энергий.

Применение

  • Стерилизация (для стерилизации продуктов питания, медицинского инструмента).
  • Медицина (лечение онкологических заболеваний , радиодиагностика).
  • Производство полупроводниковых устройств (инжекция примесей).
  • Радиационная дефектоскопия.
  • Радиационное сшивание полимеров.
  • Радиационная очистка топочных газов и сточных вод.

См. также

  • Детектор частиц

Ссылки

  • Коломенский Д.Д., Лебедев А. Н. Теория циклических ускорителей. М.: Физматгиз, 1962.
  • A.Chao, M.Tigner, Handbook of Accelerator Physics and Engineering, 1999.
  • Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин, Эксперимент (Web-публикация)
  • История, классификация, принцип действия, основные типы современных ускорителей

Wikimedia Foundation . 2010 .

Смотреть что такое "Ускоритель частиц" в других словарях:

    УСКОРИТЕЛЬ ЧАСТИЦ, см. УСКОРИТЕЛЬ …

    ускоритель частиц - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN particle accelerator …

    Установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости… … Энциклопедия Кольера

    ускоритель частиц - dalelių greitintuvas statusas T sritis fizika atitikmenys: angl. particle accelerator vok. Teilchenbeschleuniger, m rus. ускоритель частиц, m pranc. accélérateur de particules, m … Fizikos terminų žodynas

    - (ускоритель элементарных частиц), в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ устройство для увеличения энергии заряженных частиц путем увеличения их скорости при помощи переменных электрических полей в вакуумной камере. Для того, чтобы энергия частиц… … Научно-технический энциклопедический словарь

    Заряженных частиц установка для получения частиц высоких энергий в физике и технике Ускоритель (в ракетной технике) движитель ракеты Ускоритель (графический) устройство для ускорения работы видеоадаптера в компьютере Ускоритель (клавиатурный)… … Википедия

    ускоритель (заряженных частиц) - Электрофизическое устройство, предназначенное для увеличения кинетической энергии заряженных частиц. Примечание Принято, что в ускорителях энергия частиц увеличивается более чем на 0,1 МэВ. [ГОСТ Р 52103 2003] Тематики ускорители заряженных… … Справочник технического переводчика

    ускоритель с переменно-фазовой фокусировкой - Линейный резонансный ускоритель с трубками дрейфа, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем возможно чередование ускоряющих и фокусирующих зазоров между трубками дрейфа.… … Справочник технического переводчика

    ускоритель с пространственно-однородной квадрупольной фокусировкой - Линейный резонансный ускоритель, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем ускоряющее поле имеет квадрупольную симметрию. Примечание Возможные модификации таких… … Справочник технического переводчика

    ускоритель заряженных частиц - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN charged particle accelerator … Справочник технического переводчика

Рекомендуем почитать

Наверх